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Preface

This dissertation is the result of a long period of learning, researching, programming and
debugging, that started before I even decided to follow a Master in computer science. I was
only a teenager when I was already attracted to the beauty of computer graphics, but to me
this was more like a hobby than something you could study. Many years later, I rediscovered
this interest when I was a student at the University of Applied Sciences in Utrecht. There I
followed with great interest courses on computer graphics and rendering methods, and I was
advised to continue with a Master in this field. Through courses I followed as a Master student
at the University of Groningen, I met my future copromotor dr. Andrei C. Jalba. Under his
guidance I participated in an internal project on deformable-model simulations. Eventually,
this led to a serious interest in doing a PhD. One day I was introduced to my future promotor
prof. dr. ir. Jarke J. van Wijk, who is leading the Visualization group at Eindhoven University of
Technology, and we talked about being a PhD candidate. I realized that being a PhD candidate
is a unique opportunity to deepen your knowledge on a few subjects. Now that this dissertation
is done, I can say that being passionate about your work is also important when you are doing
a PhD. I can also say that I deeply enjoyed my time as a PhD candidate. A decision I do not
regret at all. Along this path I have learned a lot, deepened my knowledge, developed skills
and met various people who helped and supported me in reaching this goal. In the following
I want to thank everybody who played a direct or indirect role during this journey.

First and foremost, I want to thank my promotor prof. dr. ir. Jarke J. van Wijk for giving me the
opportunity to do a PhD in his group. Jack, thank you for all your help and advice. Although
my work was not in the group’s core subject, visualization, you helped me a lot with your
insight, ideas, optimism, and sharp and to the point feedback. Especially on this dissertation.
It was a real honor to have you as my promotor.

Second, I want to thank my copromotor dr. Andrei C. Jalba for his daily supervision. Andrei,
thank you for asking me to do a PhD and for all your help during my time as a PhD candidate.
Especially for helping me with my research, writing, proofreading my work and pushing the
boundaries of our field. I enjoyed working with you and I have learned many things from you
during my time as a PhD candidate.

I would like to thank prof. dr. Elmar Eisemann, dr. Michiel E. Hochstenbach, dr. Miguel A.
Otaduy, prof. dr. Iuliu Sorin Pop and prof. dr. Alexandru C. Telea for accepting the invitation to
be part of the PhD committee, participate in the defense ceremony and provide valuable feed-
back on my dissertation. Additionally, I want to thank Michiel Hochstenbach for his thorough
feedback on the draft of this dissertation. Furthermore, I want to thank Miguel A. Otaduy for
inviting me to join his research group at Universidad Rey Juan Carlos in Madrid. Although it
was not easy to leave everything behind, I am happy that we made the decision to move to
Madrid. Miguel, thank you for your additional advice and giving me the possibility to attend
SIGGRAPH.



The PhD journey is for every PhD candidate different and in general it is not a straight line.
During my time as a PhD candidate it was always good to have fellow PhD candidates around
that have different paths with similar difficulties. On this path I have met a great group of
people. Thank you Dennie Reniers, Danny Holten, Niels Willems, Yedendra Shrinivasan, Jing
Li, Kasper Dinkla, Stef van den Elzen, Roeland Scheepens, Martijn van Dortmont, Paul van
der Corput, Bram Cappers, Alberto Corvo, Humberto Garcia Caballero, Dennis Dingen and
Dennis Collaris for all the fun and (serious and non-serious) conversations we had during
lIunches, drinks, diners and other events. Roeland, Kasper and Stef, thank you for sharing your
need for coffee with me. I'm happy that I can say that my progress bar is now finally complete.
Additionally, I want to thank my other colleagues Michel Westenberg, Huub van de Wetering,
Robert van Liere, Romain Bourqui, Mark de Berg, Herman Haverkort, Kevin Buchin, Maike
Buchin, Dirk Gerrits, Elisabeth Melby and Meivan Cheng, at the TU/e VIS/ALG group for
the nice environment, collaborations during the design based learning courses, and (in)direct
support.

After leaving Eindhoven for Madrid, my colleagues at Universidad Rey Juan Carlos helped me
with many daily things that are usually easy to arrange, but difficult to do when you are not
fluent in Spanish. Thank you Angela Mendoza, Jorge Lopez, David Miraut and Dan Casas for
all help regarding social security, tax and healthcare issues, and providing a nice atmosphere
in the group. Additionally, I would like to thank colleagues Alvaro G. Perez, Alberto Sanchez,
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Kate Kardash, Cristian Romero, Christos Koutras, Zhongyun He for their support, language
exchange and discussions on various topics during lunches and other events. Juanjo, also thank
you for your advice on non-linear elasticity models.

The decision to do a PhD was not made if I did not had the opportunity to get in touch with the
beauty of computer graphics in the first place. Thank you Gibby Koldenhof for your enthu-
siastic courses on computer graphics and rendering methods, and motivating me to continue
with a Master after obtaining my Bachelor of Engineering.

Natuurlijk kan ik mijn ouders niet vergeten. Pa en Ma, bedankt voor jullie onvoorwaardelijke
steun en liefde die ik van jullie heb mogen ontvangen voor alle keuzes die ik heb gemaakt.
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Introduction

1.1 Motivation

1.1 Motivation

ince the early 1960’s (Sutherland [172]) computers are used to generate all kind of images,
S ranging from technical Computer Aided Design (CAD) images, to photo-realistic images for
product presentations, games and movies. In this process, the geometric descriptions of objects
in a scene are transformed given the properties of a virtual camera. These transformed geomet-
ric descriptions are then projected on the image plane. By using additional properties of the
objects’ surfaces and lights in the scene, shading effects can be added to the objects’ projections
to obtain realistic images. This process is known as Rendering. An important application of
rendering is computer animation for, e.g., games and motion pictures. In these applications the
objects’ geometric descriptions are dynamic and can be controlled by the player who is play-
ing a game, or the animator who is creating an animation for a motion picture. The animated
objects and their motions can vary much, ranging from walking characters and flocking of
large groups of animals, to motions of fluids, cloth, hair and snow. An important motion type
is induced by physics laws, for example, Newton’s laws of motion, friction, gravity, viscosity,
elasticity, etc. Animating this kind of phenomena can be challenging. Standard key-frame
and interpolation techniques are not able to produce the underlying physical behavior of the
animated objects or phenomena in an easy way. Handcrafting the animation is usually very
difficult since the number of objects and degrees of freedom can be very large. Therefore, a
better approach to animate such objects and phenomena is to use mathematical models of the
underlying physics laws in combination with numerical simulations to compute the objects’
motions. However, this is a difficult problem to solve, especially if the motion and shape of
the objects are (in)directly influenced by motions and deformations of other objects through
contact and friction.

1.2 Simulation of Deformable Bodies

The simulation process found in many computer animation applications can be described us-
ing Figure 1.1. A scene consists of a set of objects, including their current positions. The current
velocities are maintained in a separate velocity state. Each object can interact with the envi-
ronment and other objects through contact and friction, or using other external forces and
constraints. The scene is rendered and shown to the user, also, the user can interact with the
objects and the environment, resulting in additional forces and constraints. The new state of a
scene after a time-step is obtained as follows. First, internal forces and dynamics are computed
using, e.g., the Finite Element Method (FEM) or Rigid Body Dynamics (RBD). These forces, addi-
tional external forces and constraints are collected in the Force/Constraint state. This provides
the input for a Time integrator, which computes a new velocity state. To this end, a system
of Partial Differential Equations (PDEs) is derived, which is approximated and numerically
solved using a Solver. This process is often computationally demanding. Therefore (parts of)
the solver can be executed on modern GPUs and CPUs, having highly parallel architectures.
Finally, the new positions in the scene are calculated by integrating the updated velocities.

In general, this recipe for simulations needs to be accompanied with additional requirements.
Depending on the type of application, particular requirements are more important than others.
For simulations we consider the following requirements:
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Figure 1.1: The simulation process.

Stability: Stability is related to the feedback loop that is present in simulations. Because
Newton’s second law of motion is time integrated using a time-integration method, and
each time-integration method introduces small truncation errors that depend on the
time-step size, truncation errors may accumulate. As long as these errors are not ampli-
fied by the time-integration method, the simulation behaves stable. When these errors
are amplified, the simulation becomes unstable, the results are unreliable and usually do
not look realistic. One approach to increase the stability is to reduce the time-step size
in case of explicit time-integration methods, or use implicit time-integration methods
that are unconditionally stable. When implicit methods are used, the problem to solve
is usually more complex, demanding more computational resources.

Accuracy: Accuracy is related to the computation of certain quantities describing the
state of a simulation, for example, the computation of the forces, collisions and the new
velocity state. In general, the more accurate approximation of the solution is needed,
the more computations are required. If the accuracy of a simulation is set too low, the
motions and deformations may not look realistic. When the problem is not solved with
a certain accuracy, some residual energy may remain in the system. In case of objects
in contact, this residual energy can cause instabilities in the motions of the involved
objects and might cause oscillations that negatively affect the realism.

Efficiency: Depending on the required stability and accuracy, a simulation can be more
computationally demanding. This affects the running time of the simulation. The run-
ning time of the simulation is also affected by the computational efficiency of the solver
method, which is related to the complexity of the methods and operations used by the
solver. If the complexity of the simulation increases due to external factors, the com-
putation time should not dramatically increase. If the solver method is not efficient for
solving a particular problem, often a reduced form or an approximation of the problem
is used, in order to meet the time-constraints.
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1.3 Objective

Contact Accurately simulating contact between deformable (and rigid) objects is a very
challenging task that requires accurate and efficient methods. An accurate computation of
friction can dramatically increase the realism of the simulation. If friction is not treated ac-
curately, even simple examples may fail and result in non-realistic / non-physical motions.
Friction is a complex phenomenon to deal with, because of the tight coupling between the
degrees of freedom of the objects in contact. The motion of an object influences the motion
of the other objects that are in contact with the former. On top of that, friction forces are
tightly coupled with contact forces. A small change in the object motion can result in a small
change in the contact-forces, which in turn affects the dissipation of energy through friction.
This chain of force- and motion-propagation is very difficult to simulate and is usually ap-
proximated, which could result in stability problems. When deformable objects are involved,
also their deformation influences contact and friction forces. Due to the tight coupling, such
problems are typically non-smooth and non-linear and are therefore hard to solve accurately
and efficiently. On top of that, such systems are inherently chaotic, meaning that the final
simulation results are very sensitive to changes in initial conditions, rounding errors and the
order of computations in case of non-deterministic parallel computations.

1.3 Objective

The main research question addressed by this dissertation is as follows:

“How can we accurately and efficiently simulate rigid and deformable solids that can collide, in a
fast and stable way for computer animation applications?”

Simulations used in animations do not necessary need to be fast but accurate, while the same
simulation used in interactive applications like Virtual Reality (VR) and Gaming require high
simulation rates where a smaller accuracy is allowed. All applications require stability and
need to be performed efficiently. The computational complexity of existing methods for simu-
lating contact between rigid objects prevents us to directly use them for deformable solids. In
this dissertation we develop methods that aim for a faster execution time by exploiting paral-
lelism. We also aim to remove the computational bottlenecks by re-formulating the underlying
problem.

In order to answer the research question above we subdivided it in four parts:

« Parallel acceleration: How can we accelerate both numerical methods and simulation
methods such that we can solve/simulate large problems in a short amount of time us-
ing parallel hardware? Parallel hardware, such as (Multiple) GPUs, provides us with a
tremendous amount of computational resources. Given the hardware, the goal is thus
to use as many resources as possible to solve the problem. How to achieve this?

« Performance analysis: How can we provide tools for reasoning about the efficiency of
(numerical) methods performed on parallel hardware? The problems solved using par-
allel hardware can vary in size and complexity and may or may not be able to use all
computational resources. What are the performance limitations and how do they affect
the efficiency of the hardware?
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Figure 1.2: Overview of this dissertation.
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- Computational efficiency: How can we simulate coupled simulations in an efficient way?
Coupled simulations consider different objects or materials interacting with each other,
through a direct or indirect coupling. Due to this coupling, the computational complex-
ity of a simulation can significantly increase for certain problems. How can we make
such simulations more efficient?

Accuracy and stability: How can we increase the accuracy and stability of (coupled) sim-
ulations? In such simulations, the coupling should be performed in an accurate way.
Usually coupling is based on physical properties, like contact and friction. How can we
treat, e.g., contact and friction in an accurate way? Closely related to this is the stability
of a simulation.

Furthermore, we can distinguish three main research areas that are involved in physics-based
animation and are also closely related to the research question, namely:

« Physics
+ Numerical Mathematics/Analysis
» Computer Science

Each of the main chapters in this dissertation aims to address a few aspects of the research
question that are related to these research areas, as shown in Figure 1.2.

1.4 Overview and Contributions

This dissertation is organized as follows: Chapter 2 provides an overview of the research
area Computer Graphics and briefly introduces Contact Mechanics and GPU Computing. An
overview of methods found in physics-based animation is provided, as well as an overview of
methods for performing linear algebra on GPUs. Apart from various simulation models found
in physics-based animation, a discussion is provided about various contact solver methods. In
the background sections of each chapter, a more detailed discussion among different methods
are provided.
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1.4 Overview and Contributions

Chapters 3 to 6 form the main contribution of this dissertation. Chapter 3 describes methods
for storing large sparse-matrices on GPUs and how to efficiently perform the Conjugate Gra-
dient (CG) on (multiple) GPUs. Chapter 4 describes a FEM simulation of deformable objects,
solely performed on modern GPUs and uses the machinery developed in Chapter 3. Chap-
ter 5 describes a novel and efficient approach for accurately simulating contact and friction
between multiple deformable and rigid solids. Chapter 6 describes the collision handling and
intersection tests used in the implementation of Chapter 5.

The key contributions of this dissertation can be summarized as follows:

1. In Chapter 3 we introduce a variation of the Block Compressed Sparse-Row storage
scheme that is adapted to better fit the memory access patterns found on modern GPUs.
This storage scheme is used in a parallelized version of the Conjugate Gradient method.
Additionally, an approach for estimating the performance of the CG and similar meth-
ods is introduced that allows one to reason about its performance for a specific unseen
problem, compared to the theoretical peak-performance of the GPU device.

2. Chapter 4 presents an implementation of linear elastic deformable bodies through a Fi-
nite Element Method (FEM) simulation, running solely on the GPU. Here the machinery
presented in Chapter 3 is used for solving the linear systems. The simulation is able
to run at interactive simulation rates (> 30 frames per second) on a GTX280 GPU, in a
stable way and for relatively complex models (> 10K elements). Since the simulation
runs solely on GPU, the method is not slowed down due to transferring data between
GPU and CPU memory.

3. Chapter 5 provides a novel approach for accurately computing contact and friction to-
gether with the dynamics of the simulated objects. The method is able to solve this prob-
lem without computing an intermediate Linear Complementarity Problem (LCP), which
can be inefficient for deformable bodies with many degrees of freedom. Coulomb’s fric-
tion cone is modeled by a force that is always aligned with the sliding velocity, which is
more accurate than frequently used pyramid approximations found in many constraint-
based methods. Due to the non-linear behavior of the simulated models, linear solvers
are not able to correctly compute a perfectly collision-free state at convergence since
their shape changes due to contact and friction. The presented method solves this
non-linear problem efficiently, thus guaranteeing a perfect collision-free state at con-
vergence.

4. Chapter 6 provides geometric primitives for correctly detecting intersections between
vertices, faces and edges of a deformable mesh. With standard vertex-face and edge-edge
intersection tests, internal collisions can potentially result in wrongly detected colli-
sions, resulting in non-physical motions or even failure of the underlying method. The
chapter also provides details about the collision handling system presented in Chapter 6.

Finally, Chapter 7 concludes the dissertation and Appendices A to D provides additional back-
ground information.
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1.5 Publications

The following chapters are based on the following publications:

« Chapter 3: “Analysis and Performance Estimation of the Conjugate Gradient Method
on Multiple GPUs” M. Verschoor and A.C. Jalba. Parallel Computing, 38(10-11), 552-575,

2012 [183].

« Chapter 4: “Elastically Deformable Models based on the Finite Element Method Accel-
erated on Graphics Hardware using CUDA” M. Verschoor and A.C. Jalba. Journal of
WSCG, 20(3), 179-188, 2012 [184].

« Chapter 5: “Efficient and Accurate Collision Response for Elastically Deformable Mod-
els” M. Verschoor and A.C. Jalba. ACM Transactions on Graphics, 38(2), 17:1-17:20,
2019 [185].

Chapter 6 is based on previously unpublished work, but it is part of the implementation of
Chapter 5.
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Background

2.1 Introduction

2.1 Introduction

n the previous chapter a motivation of the research and an overview of this dissertation were
I given. In this chapter we provide background material and the context of the research. First
a brief overview of the main research field Computer Graphics is given, which is further nar-
rowed down using Computer Animation followed by an overview of Physics-Based Computer
Animation, Contact Mechanics and GPU Computing. Related work specific to the methods de-
scribed in the next chapters are discussed in the related work sections of those chapters. In
the appendices additional background material on the methods used in this dissertation is
provided. Appendix A provides additional information on the preconditioner introduced in
Chapter 5. In Appendix B a brief overview is given on optimization methods used for solving
some of the problems described in this dissertation and discusses the methods used for solv-
ing optimization problems typically found in physics-based computer animation. Appendix C
provides additional material for rigid-body simulations as used in parts of this dissertation.
Appendix D gives a brief introduction to FEM-based Elasticity.

2.2 Computer Graphics

Computer Graphics is a vast research area which in general concerns techniques used for the
creation and manipulation of certain models or data and their transformation into (sequences
of) images using computers. These models and data can originate from various sources and
other research areas, e.g., mathematics/statistics, physics, meteorology, engineering, while
also human interaction leads to new input. Computer graphics has led to a variety of spe-
cialized subdisciplines, such as data visualization (providing insight into large data collec-
tions) [53, 91, 92, 155, 191], scientific visualization (providing (temporal) insight into physical
processes or objects) [60, 83, 93, 190], virtual reality (aiming at immersion of users in vir-
tual worlds) [162] and rendering (aiming at highly realistic images) [51, 100, 144]. In this
dissertation we focus on animation: the synthesis of sequences of images to show dynamic
scenes. Animation is a discipline that encompasses Traditional Animation and modern Com-
puter Animation. Traditional animation can be considered as the art of creating animations
using physical objects and processes. Computer animation concerns 2D and 3D animation
methods for creating animations using computers and can be considered as a subdiscipline of
computer graphics. Physics-based Computer Animation is a subdiscipline of computer anima-
tion and concerns the application of simulation techniques for animating the physical behavior
of objects or phenomena. The main focus of this dissertation is on techniques related to sim-
ulation methods used to create animations — more specifically, the simulation of deformable
and rigid objects and interactions between objects through contact and friction. In the follow-
ing sections we further describe the field of computer animation, followed by a description of
physics-based animation.

2.2.1 Computer Animation

The art of animation can be traced back to the 19th century when the first devices were created
for showing small animations of hand-drawn images. With the invention of the Cinematograph
and the development of photography in the early 20th century, the first short animations were
created by showing sequences of hand drawn images or photos. Using techniques like Cell
Animation, Key-frame Animation and Rotoscoping, animators were able to create motion pic-
tures with detailed and static background images, while the foreground contained various
hand drawn animation loops that were re-used among different animations. Another form of
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Figure 2.1: A 2D/3D key-frame animation system. The key-frames (dark-gray blocks) on the time line are set directly
by the user (animator) and the in-between frames are obtained by interpolating between key-frames. Alternatively,
procedures can be used to directly set the key-properties of the objects for each frame. These procedures can have
a simulation, data or interaction as input.

animation is Stop Motion animation in which the properties of physical objects in a scene are
changed between two consecutive frames. By showing the frames at a sufficiently high rate,
each of these techniques will create the illusion of smooth moving characters or objects.

With the development of computers and computer graphics, animators were able to use com-
puters for creating animations. In the early days these animations were mainly 2-dimensional
or relatively simple 3-dimensional animations. Many concepts known in traditional animation
were re-applied in computer animation, for example, key-frame and cell animation. With the
adoption of computers, animations were not solely created by animators, but were also created
by any form of data, user interactions, mathematical models or procedures, or combinations
of these inputs. This has led to a wide variety of applications such as (interactive) data vi-
sualization, gaming, VR, education, art, user interfaces, etc. Since the discipline of computer
animation is very broad, we further narrow this down to 3D animation methods and animation
systems.

2.2.2 Animation Systems

Modern 3D animation systems can be described using Figure 2.1 and consists of a scene con-
taining the objects to be animated, a virtual camera used to generate the final images, and
lights that describe the virtual light conditions in the scene. Each entity in the scene has its
own properties, like position, orientation, scale, intensity, color, etc. Furthermore, animation
systems have a time line. A time line contains all frames of the animation. The animator can
set each of the key properties of the objects in the scene for a specific frame in the anima-
tion; such frames become key-frames. The objects’ properties between successive key-frames
are obtained by interpolating between the key-properties. In this way the animator is able to
create animations in which the key-properties change over time.
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2.3 Physics-Based Computer Animation

Animated objects can consist of a single geometric mesh, or they are composed using multiple
smaller objects that are linked to each other using a hierarchical structure, usually involving
joints. For example, a car object is a composition of a chassis, doors, wheels, etc. The position
and orientation of each individual part of this car depends on the position and orientation of
its parent object in this structure. For example, when the position of the car changes, also
its wheels should move along. On top of that, a local offset can be added to the position and
orientation of each wheel relative to the chassis. These additional offsets are properties that
can also be specified as key-values on the time-line.

Character animation extends this idea of hierarchical structures. Usually a skeleton is created
for a particular character. On top of this skeleton, the skin of the character is placed and
connected to the underlying skeleton. When the animator animates the skeleton, the skin
of the character follows the motion of the skeleton. Using techniques like Linear Blend Skin-
ning [102, 116], the deformation of the skin is defined by a combination of the motions of the
nearest skeleton parts. Such techniques give an animator control over a complex skin using
a simplified version of the character, its skeleton. On top of this, the skeleton can also be
controlled directly by data obtained through Motion Capture [195], user interactions or com-
putational models for controlling characters like Flocking [150] or Inverse Kinematics [6].

The advantages of such methods are: (i) the animator has direct control over the final result of
the animation, and (ii) by carefully changing the key-values, usually very artistic results are
obtained. The disadvantages are: (i) no physical correctness and (ii) the difficulty to animate
scenes with many degrees of freedom. The lack of correct physical models is usually visible
as non-physical motions or deformations of the objects or characters, or as interpenetrating
surfaces. The latter can be corrected using post-processing methods. When a large number of
characters or objects are animated, also the number of degrees of freedom grows rapidly. Cre-
ating good and artistic-looking animations now becomes a difficult process. If various charac-
ters and objects interact, also the animation method must be aware of the physical constraints
that emerge in such complex cases. On top of that, some animations require very complex but
realistic motions of daily objects or phenomena. For example, the motions of trees, grass, hair,
cloth, fluids, smoke, sand, dust, snow, etc., subject to various external forces like wind, friction,
viscosity, and cohesion. Such examples are very difficult to animate in a realistic way using
key-frame animation because the interpolation of specific properties between two key-frames
is not aware of the underlying physics laws or corresponding constraints.

Many of these difficulties of traditional 3D computer animation are addressed by physics-based
computer animation methods, as we will describe in the next section. Many of these meth-
ods require physics simulations and often use sophisticated numerical methods for solving the
underlying physics problems. Our work can be positioned in the area of physics-based com-
puter animation methods and aims to provide efficient (numerical) methods for performing
the underlying simulations.

2.3 Physics-Based Computer Animation

Physics-based computer animation is an active area of research which is concerned with an-
imating complex models, behaviors or phenomena based on physics laws. Within physics-
based animation methods, usually some simulation is performed in which objects or phenom-
ena are simulated. In general, a system of Partial Differential Equations (PDEs) is created and
solved, which leads to the new state of the degrees of freedom in the simulation, following
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the outline in Figure 1.1. Degrees of freedom in this context can refer to simple rigid ob-
jects, complex deformable objects, or systems of particles that resemble the flow of fluids or
granular materials. Animating such complex systems is often too demanding using traditional
key-frame methods. The motion of these systems can be subject to various constraints pro-
vided by the animator, actor, or other objects in the simulation or scene. This in turn enables
interactions between (parts of) objects and the user, which results in realistic motions of the
objects in the environment. However, these motions can be difficult to control precisely due
to the chaotic nature of the underlying systems. This can be problematic for animators who
demand a certain animation as a result.

Although physics-based animation increases the realism of animations, it requires a thorough
understanding of the involved physics, numerical mathematics and hardware to design and
implement methods that can simulate the desired phenomena. Furthermore, when collisions
or contact occurs between different parts of the simulated objects, energy is dissipated through
friction. To attain a high degree of realism, accurately simulating friction is of key importance.
Additionally, depending on the complexity of the underlying problems, this kind of simulations
can also demand substantial computational power and memory resources. Therefore, many
methods are performed on GPUs or even clusters. This also requires the methods to be de-
signed to run in parallel. Therefore, GPU and parallel computing has received a lot of interest
from this area.

When applied in interactive applications, one has to face time-constraints for the computations
in order to produce animations at interactive frame-rates. A trade-off between speed and real-
ism is often made. For offline animations time is not always a hard constraint and the amount
of computing power can be easily scaled up. When time-constraints apply, the desired realism
is not always easy to obtain. For example, stacking a few rigid objects on top of each other
can be a difficult problem to solve when time-constraints apply and computational resources
are limited. In such simulations the underlying numerical methods are not able to produce
an accurate solution within the required time, resulting in a non-smooth behavior over time.
Furthermore, to produce accurate results, also the collision detection must be precise. If this
is not done properly, collisions can be missed and detected in a later stage in the simulation,
resulting in spurious motions.

In the following subsections a brief overview of commonly used methods in Physics-based
animation is given.

2.3.1 Rigid Body Simulations

One of the most elementary type of simulations for animations are rigid body simulations, see
[20]. A rigid body is, as its name suggests, is a body that cannot deform. Thanks to this, the
state of a rigid body can be described using one position and one orientation, see Figure 2.2.
Rigid bodies are used in many scientific and engineering disciplines, but are nowadays also
used in many computer games and virtual reality applications. Game engines [57, 182] and vir-
tual environments are usually equipped with specialized physics engines [22, 45, 128] that are
heavily optimized for simulating rigid bodies. These engines also perform collision detection
between all objects and take care of the computation of collision responses. Since rigid objects
can not deform, collisions between two objects can be computed very accurately. Rigid objects
also appear as series of connected articulated objects. These connections are often modeled
using joints based on constraints [9] or springs. Granular materials can also be considered
as a special kind of rigid body simulation. By modeling particles as small spheres, collision

13

Background H



Background !

2.3 Physics-Based Computer Animation

N
=

Figure 2.2: Rigid body: the state of a rigid body is expressed by the position of its Center of Mass x., and three
rotations around axes x, y, z. A point p on its surface is expressed as p = x. + r, with r a vector from the center of
mass to point p. The linear motion of the body affects the center of mass x. and the angular motion affects vector
TI.

detection can be simplified. However, granular materials can also be simulated using hybrid
approaches, in which the material is regarded as a fluid. In Appendix C a full description of
rigid body dynamics is provided as used in Chapter 5.

2.3.2 Deformable Body Simulations

Deformable bodies are volumetric objects that will deform under a load or application of forces.
In the following subsections, a number of methods are mentioned.

Mass-spring systems  Mass-spring systems are systems of particles with a particular mass,
connected through springs with a certain stiffness, see Figure 2.3. These mass-spring systems
can be used to model simple cloth or deformable models. In general, the force generated by a
linear spring can be computed using Hooke’s law, i.e.,

f = —kAx, (2.1)

with k the stiffness of the spring and Ax the change in length with respect to the initial con-
figuration of the spring. This equation also forms the basis of Linear Elasticity, described in
Appendix D.2.

Figure 2.3: A mass-spring system: a number of point-masses are connected through springs. When the length of
a spring changes with respect to its rest configuration, a force is exerted on the connected masses. This eventually
results in a motion of the corresponding points.
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Figure 2.4: FEM and subspace methods.

Finite Element Based Elasticity methods The Finite Element Method (FEM) [143] is a stan-
dard method among engineers for performing all kinds of simulations. FEM based methods
require a mesh to discretize the computational domain, see Figure 2.4a. In three dimensions,
tetrahedral, cubical or hexahedral elements are often used. Per element a local instance of the
global problem is approximated using so-called shape functions. These shape functions can be
linear or a higher order polynomials. Finally, all equations of all individual elements are assem-
bled into a large system of equations. This system is typically solved using the Conjugate Gra-
dient (CG) [88] method. The Finite Element Method allows for elements with different shapes
and sizes, and often smaller elements are used in regions where a higher accuracy is needed.
The advantage of FEM is that the residual of the approximation solution is minimized at the
nodes, resulting in a good global approximation. Furthermore, an implicit time-integration
scheme can be easily used, starting from a solution from an earlier time-step. However, this
still requires to solve a large linear system. In graphics applications, the topology of the un-
derlying mesh is often kept fixed, while engineering applications perform a re-meshing of
the domain. A popular method used in Computer Graphics is co-rotational FEM [124]. This
method keeps the structure and stiffness of the model fixed, but takes a correction with re-
spect to rotations of the elements into account. Other popular methods use a Finite Volume
approach [95, 96, 168, 176], which models the problem on the boundaries of the elements.
Using the deformation gradient tensor and its Singular Value Decomposition (SVD), the pure
deformation and the rotation of each element is obtained. The pure deformation is then used
to compute the stress in a more straightforward way. In Appendix D a full description of
FEM based deformable bodies is provided as used in Chapters 4 and 5. Chapter 4 describes a
GPU implementation of the co-rotational method [124], and is accelerated using the method
described in Chapter 3.

Subspace methods The number of degrees of freedom in typical FEM simulations can grow
rapidly, which increases the computation time. By projecting the deformations on a smaller
sub-space, the computational overhead can be reduced. Subspace methods are often based on
statistical methods that reduce the set of basis-vectors which are obtained from, e.g., FEM based
methods. By projecting a vector from the full space on the subspace, a dimensionality reduction
is obtained. For example, using Principal Component Analysis (PCA) such a reduction can be
obtained by selecting the basis vectors corresponding to the most significant eigenvectors. The
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(a) Fiber-based cloth. (b) Mesh-based cloth.

Figure 2.5: Fibers and cloth simulations.

selected basis-vectors then define the so called reduced subspace. Other approaches inspect the
modal bases of the deformation and select a number of modes with low frequencies, or select
a few representative elements to describe the global deformation, see Figure 2.4b. The number
of selected basis vectors largely determines the dimensionality reduction and the quality of
the animation. Using training data originating from the original models, typical deformations
can be learned from examples such that the final set of basis vectors can reproduce similar
deformations. Methods that perform this kind of reductions are, e.g., Cubature and Sub-Space
Methods [4, 14, 15, 28, 140, 175, 181]. Applications are typically found where deformations of
objects should be obtained fast, e.g., interactive 3D animation applications, virtual reality, and
games.

2.3.3 Fibers and Cloth

In addition to volumetric deformable bodies, also non-volumetric deformable objects exist,
e.g., fiber and cloth simulations. Simulations of fibers are both found in applications in which
hair is simulated [25, 47] or in which cloth is simulated at yarn level [41], see Figure 2.5. In
both areas single fibers are simulated through chains of single rods. In hair simulations, each
fiber can potentially collide with all other fibers. In the case of yarn based cloth simulations,
it is known beforehand where and which (segments of) fibers are in contact, so at each yarn
crossing several forces can be modeled. Furthermore, yarns are allowed to slide over each
other, resulting in friction. By modeling cloth at yarn level, the behavior of the cloth is mainly
defined by the interactions between the yarns and thus deliver very realistic results compared
to more traditional mesh based cloth simulations. Similarly, by modeling hair using individual
fibers, the resulting appearance is very realistic. Traditional cloth simulations are modeled
using a lattice mesh or using a mass-spring approach and define bending and shear forces on
the crossings [11, 29].

2.3.4 Fluids

Simulation of fluid is an active research area. Fluid simulations are successfully applied in
many feature movies, games and virtual environments. Many methods applied in graphics
originate from computational physics in which one seeks for accurate methods for solving
the Navier-Stokes equations for modeling, e.g., the flow of oceanic currents, weather patterns
and two-phase flows. Within fluid simulation techniques, a distinction between Eulerian and
Lagrangian methods can be made. Eulerian methods model the flow of fluids using an Eulerian
grid. Lagrangian methods model fluids using particles. Hybrid methods combine Eulerian and
Lagrangian approaches.
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(a) Grid-based fluids: the ve- (b) Smoothed Particle Hydro- (c) Position-based dynamics: par-
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Figure 2.6: Various fluid simulation methods.

Grid Based Methods Classical methods for simulating fluids are based on computations
in a grid. Here the computational domain is formed by a grid in which each cell has the
same shape, see Figure 2.6a. Each cell of the grid represents a number of different quantities,
e.g., velocity, density and pressure. By solving the Navier-Stokes equations on the grid, an
accurate simulation of the flow of a fluid can be obtained. Therefore grid based methods are
frequently used in engineering and scientific applications. Since the size of the grid can be very
large, this kind of methods are computationally intensive. Examples of grid-based methods in
Computer Graphics are the flow of fluids [55, 64, 65, 166], simulation of smoke [61] or clouds
[82]. Furthermore, some of these simulations can be coupled with a surface tracking method
to also simulate the surface of the fluid, using, e.g., (particle) level-set methods [16, 54, 56, 137].

Smoothed Particle Hydrodynamics Smoothed Particle Hydrodynamics (SPH) [79, 110] is
a Lagrangian approach for simulating various phenomena found in astrophysics [165], fluid
[123] and granular material simulations [1]. The method uses large amounts of particles. Each
particle carries some physical properties, like a mass or temperature. Using smoothing ker-
nels, a weighted average of these quantities can be computed. Particles closer to the point of
interest receive a larger weight than distant particles, see Figure 2.6b. When a derivative of
a quantity must be computed, the derivative of the kernel is used in the convolution. SPH
enables fast simulations of fluids in games or for offline animations. All computations are
performed per particle and are therefore candidates for parallelization. The advantage of the
method is that it can change the resolution by changing the size of the kernel. Furthermore,
the method is able to simulate objects that do not have a fixed topology. However, since the
method works in a small area of the global domain, global constraints are difficult to enforce,
for example the incompressibility of fluids and the computation of the pressure inside a fluid.
The incompressibility is for instance better handled in Position Based Methods.

Position Based Dynamics Position Based Dynamics [21, 115, 125] can be regarded as an
extension of SPH. The method adds additional constraints to the particles which enforce the
incompressibility between individual particles. Additionally, the same constraints also allow
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Figure 2.7: Hybrid methods: the Material Point Method (MPM) transfers quantities and velocities from the particles
to the grid using APIC. Forces are computed in the grid, followed by an update of the grid velocity. The velocity and
other quantities are transferred back to the particles, and their positions are updated.

particles to ‘stick’ to each other, see Figure 2.6c. In this way, deformable or even rigid bodies
can be simulated using particles. By allowing constraints to disable, also fracturing can be
modeled. Constraints are solved using similar techniques that are found in contact mechanics,
i.e., Lagrangian multipliers are computed that represent a force that repel or attract particles.
However, when many particles are constrained, the method requires more time to converge
since only a local approximation is computed, while one is seeking for a global one.

Hybrid methods Hybrid methods typically combine Eulerian and Lagrangian type of sim-
ulations. The Material Point Method (MPM) [171] is a particle-based method that computes
some properties using kernels found in SPH methods and transfer other properties to a grid
for which a global problem is solved, see Figure 2.7. The result is then transferred back to the
particles. Nowadays these hybrid methods are very popular for simulating various phenom-
ena, like snow [169] or sand [198]. The main issue with these methods is how to transfer a
quantity from particles to the grid and back. Transfer methods are for example PIC, APIC and
FLIP [80, 98].

2.3.5 Learning and Example Based Methods

Machine Learning is a field within computer science that develops models that allow the com-
puter to ‘learn something’. At first glance computer graphics and machine learning seem two
distinct fields, but recently the graphics community is adopting machine learning methods,
for example, the use of Convolutional Neural Networks (CNNs). Since many physics-based sim-
ulations can be very computationally intensive, one interesting approach is to make them
interactive by replacing the underlying physics model by a model that is learned from exam-
ples. Usually the new model is some kind of CNN that is able to reproduce a similar behavior,
see [36, 179]. Furthermore, with highly sophisticated simulation models available, it can be
difficult to find the optimal set of parameters to simulate a particular material. Using machine
learning and computer vision methods one can find these parameters given the examples ob-
tained from recorded images or videos [197].

2.4 Contact Mechanics

The previous sections described various simulation methods found among graphics applica-
tions. In this section a brief overview is given about contact mechanics and methods that take
contact between objects into account.
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When two objects are in contact, an equal (but opposite) contact force is applied on both
objects. Depending on the net forces acting on the bodies, this contact force has a normal
component in the normal direction of the contact surface, and a tangential component working
in the plane of the contact surface. These forces can result in additional motions which in turn
results in an additional change in the contact forces, the orientation of the contact surface and
possibly a change in the shape of the contact area. This process continues until no change in
the contact forces and velocity is found, i.e., when a stable state is found. When such systems
are simulated using discrete time-steps, the state of the simulation at the end of the time-step
must also be stable, i.e., the obtained forces and velocities should not result in yet additional
changes in the forces and velocities. Due to this tight coupling of deformation, motion and
contact forces, this problem in non-linear. A stable configuration can be considered as a root
of this non-linear problem. This problem is also known as Signorini’s problem [158]. Antonio
Signorini posed a problem of an elastic body resting on a rigid friction-less body. The problem
he described was ‘a problem with ambiguous boundary conditions’. For any point of contact,
the boundary condition should either impose an equality or inequality. The problem is that it
is not a priory known which type of boundary condition should be applied for each point in
contact, and if that solution is unique.

From the initial Signorini’s problem, the Signorini’s conditions were derived, see [33]:

« The contact force exerted by body 1 on body 2 can be positive only if the contact is
closed.

« If the contact is open, then the contact force exerted by body 1 on body 2 is zero.
« The contact force can take only nonnegative values.
« The bodies cannot interpenetrate.

These conditions describe the complementarity between the normal contact-force magnitude
fn and some contact distance d as:

0<f,Lld>0, (2.2)

which is known as a complementarity problem. When f, is a linear function of d, this problem
is known as a Linear Complementarity Problem (LCP). In Appendix B.1.5 an overview is given

of this kind of problems.
2.4.1 Coulomb Friction

The Signorini problem does not take frictional forces into account. In general, apart from the
normal force acting on both objects involved in the contact, also a tangential friction force
is present. This friction force is the result of imperfections between the surfaces. Rougher
surfaces observe a larger friction force compared to smooth surfaces. Apart from these imper-
fections also the magnitude of the normal force determines the maximum tangential friction
force. The larger the normal force is, the larger the maximum friction force in the tangential
direction can be. An approximation of this relation is known as Coulomb’s friction model,

Ifr.maxl = plifall, (2.3)

which relates the magnitude of the maximum tangential friction force ||f; max|| with the mag-
nitude of the normal force ||f, || times some friction coefficient u, which depends on, e.g., the
materials involved in the contact. The maximum friction force is the maximum force in the
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Figure 2.8: An objectis placed on a slope; by increasing the slope, the magnitude of the tangential force f; eventually
becomes larger than the maximum friction force fr max- Therefore, the type of friction changes from static (a)(b)
to kinetic friction (c), for z = 0.5, and the object starts to slide after (Figure 2.8b).

tangential direction that the contact can resist. If the force applied in the tangential direc-
tion has a smaller magnitude than the magnitude of the maximum friction force, the objects
involved in the contact will not slide over each other: the maximum friction force is large
enough to keep the net tangential force at zero. This case is called static friction or the stick
condition. For larger applied forces in the tangential direction, the friction force is bounded by
Coulomb’s friction law in Equation (2.3). As a result, the net force in the tangential direction
will not be zero, and the objects involved in the contact will slide over each other. This case is
called kinetic friction or the slip condition, see Figure 2.8.

2.4.2 Maximum Dissipation

Coulomb’s friction law dictates the boundaries on the tangential friction component. However,
no description on its direction is given. In principle, a friction force working between two
sliding surfaces should always result in a dissipation of energy. If, for example, the friction
force works in the same direction as the relative motion of the objects in contact, the friction
force will accelerate the motion and adds additional energy to the system, which is not correct.
When the friction force is working exactly in the opposite direction of the objects’ relative
motion, then the friction force will slow down the motion the most, i.e., the maximum amount
of energy is dissipated. When this is the case, the maximum dissipation principle is obeyed.
In real natural cases, this principle is always obeyed. In simulations however, the direction of
friction is determined by some computations. Therefore it is possible that the chosen direction
of the maximum friction force eventually works in a non-optimal or even a wrong direction
such that the applied friction force will introduce too less dissipation, or spurious motions of
the involved objects. By enforcing the sliding direction to be opposite of the friction force,
maximum dissipation is enforced.

Since the direction of friction can be in principle anywhere in the tangential plane, Equa-
tion (2.3) can be considered as a cone that clamps the tangential friction force. The slope of
the cone is given by the friction coefficient.

2.4.3 Non-Linear and Non-Smooth Problem

As mentioned in the introduction of this section, contact between two objects is a non-linear
problem. Contact forces will result in a change in motion of the involved objects and a change
in orientation of the contact surface. By solving this non-linear problem, eventually a stable
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configuration is found in which no change in the contact forces is observed. When there is also
a friction force working between the surfaces, the maximum dissipation principle should be
obeyed when objects are sliding over each other. This means that the tangential friction force
direction directly depends on the sliding velocity. A change in the sliding direction then affects
the friction force direction, which can lead to changes in the motion of the objects and con-
figuration of the contact surface. Additionally, since friction for a certain contact can change
between static and kinetic friction, and between impact and release. The latter two occur when
objects collide or move away from each other. Therefore, this problem is also considered as
non-smooth since contact forces are not smooth at the boundaries of these states. Simulat-
ing this kinds of problems is therefore challenging. Replacing rigid bodies with deformable
does in principle not change the handling of contacts. However, contact will also result in a
deformation of the objects that must be taken into account when finding the optimal contact
configuration.

2.4.4 Painlevé Paradox

In rigid body simulations, the use of Coulomb’s friction model can lead to situations in which
the state of a single contact is undetermined or inconsistent. It can be shown that for certain
simple configurations of a rigid body with some frictional contact, and by imposing additional
conditions or constraints on the acceleration of the body, the corresponding Linear Comple-
mentarity Problem (LCP), see Appendix B.1.5, can have a non-unique or no solution [33, 107].
The method cannot decide in which state the contact is, because the corresponding comple-
mentarity conditions cannot be met, or have multiple solutions. This inconsistency is known
as the Painlevé paradox, named after the French mathematician Paul Painlevé. This paradox
can be demonstrated by drawing a line on a blackboard using a piece of chalk. Depending on
the magnitude of the normal force and the angle of contact, either a smooth line is drawn, or
a dashed line appears. This is due to the ‘hopping’ or ‘bumpy’ motion of the chalk over the
blackboard and typically occurs for large friction coefficients .

Moreau’s time-stepping method [122], allows one to simulate the Painlevé paradox. In this
time-stepping method, an implicit method is used to simulate the smooth terms of the problem.
For the non-smooth contacts, their impulses and relative velocity are used in a complementar-
ity problem. For deformable models the time of contact is usually larger than one time-step,
therefore, this impulse approximation can be simplified by taking the impulse over the discrete
time-step. For rigid bodies simulated with reasonably small time-steps, a similar approxima-
tion can be used. However, for simulating the Painlevé paradox, these impulses need to be
approximated accurately. In case the approximation of the impulses is very rough, the method
can be regarded as an implicit method with the complementarity conditions on the velocity
level. For the classical Painlevé example, it can be shown that using this approach the resulting
LCP will have a unique solution, see, e.g., [107].

2.4.5 Collision Detection

Contact mechanics requires information of features that have collided or are about to collide.
Features are for example pairs of vertex-face or edge-edge pairs. Finding these features re-
quires collision detection methods that report all features that have a negative signed distance
[23, 24, 71, 121]. Typically, one wants to detect collisions before they occur (a priori). By ex-
trapolating the motion of the objects from the beginning of the time-step to the the end of
the time-step, a prediction about a collision is made. Since rigid bodies do not deform, their
motion can be predicted accurately as long they are not in contact. Due to this, also a distance
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approximation of a feature can be predicted accurately, e.g., using Controlled Conservative Ad-
vancements [173]. Using a distance function for these features, the location and time of impact
can be found by finding the roots of this function. If a valid collision is detected, then the fea-
ture can be taken into account. This procedure is known as Continuous Collision Detection
(CCD).

In general we can distinguish between two main approaches: sampling a signed distance field
(SDF), or computing the signed distances between the features. By sampling the signed dis-
tance field of an object using a particular vertex, one is able to determine if the vertex is inside
the object and thus if an collision had occurred. However, if the distance between the sample
at the beginning of the time-step and at the end is large, it is possible that the path in between
intersects the object, while the sampled distances are positive. This can lead to missed colli-
sions, especially if the object is thin. In these cases multiple samples along the path could be
taken, but this does not guarantee that a collision is found. Furthermore, finding edge-edge
features can be difficult. When the object is deformable, the signed distance field needs to be
recomputed frequently.

The second approach treats the surface as a piecewice linear approximation of the underlying
object. Each linear approximation can be considered as an infinite plane. Given the initial and
approximated configuration of this plane, and a certain discrete point on the other object, one
can easily determine if both features could potentially collide. By testing the signed distances
at the initial and current approximation, a change in the sign of the signed distance could
indicate a potential collision. Using a root finding method, a configuration can be found in
which the signed distance becomes zero. If the intersection point lies inside the triangle as-
sociated with the plane, the collision is valid. The main advantage of such approaches is that
no matter how fast the motion is, a collision is always detected. However, the computation
of the intersection point requires robust root-finding methods for each type of feature. On
top of that, intersections and signed distance computations of these features need to be ro-
bust. Finding potential colliding pairs can be accelerated using Bounding Volumes Hierarchies
(BVHs) [156, 178, 187, 188]. In Section 6.1 intersection tests are discussed for vertex-triangle
and edge-edge features for deformable models. The difficulty with deformable models is that
between two states, the geometry can change ‘significantly’. Face normals can change rapidly
for small changes in positions and the geometry can change locally from convex to concave.
All this must be taken into account. In these tests, also the possibility of internal collisions
must be taken into account.

2.4.6 Contact Solver Methods

Within animation and graphics applications both Penalty-based and Constraint-based meth-
ods are frequently used, see Figure 2.9. Penalty-based methods define a penalty force based
on the deviation between the actual and the desired contact configuration. Constraint-based
methods constrain the motion of the object or vertices in a particular direction such that they
can never interpenetrate. Since the response force does not directly depend on the penetration
depth, constraint-based methods are able to compute a response force that exactly prevents
penetration. Since the computed response forces may deform the objects, also other collisions
can occur or the current contact configuration might not agree with the actual (deformed) ge-
ometry. Hence, a few iterations of the contact method must be performed in order to refine
the contacts and to search for new collisions. In the following subsection we briefly discuss a
number of methods for resolving contact between (deformable) objects.
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(a) Penalty-based contact. (b) Constraint-based contact.

Figure 2.9: Penalty and constraint-based contact: penalty contact forces require a certain penetration depth d,
while constraint-based contacts compute a force f that resolves penetration depth d.

Penalty-Based Contact Methods  As mentioned before, penalty-based methods [30, 87, 121]
compute a penalty force between two objects based on the penetration depth of certain fea-
tures, similar to springs, see Figure 2.9a. Penalty-Based Contact methods have problems with
completely resolving the collisions and may introduce oscillations and additional energy to
the system. Since the contact force depends on some penalty term, usually the penetration
depth, there is always some penetration when objects are in contact and contact forces are
computed. Due to this, the response might not be physically correct or the stiffness of the
penalty force might be too large, resulting in oscillations. Continuous Penalty Forces [174]
combines Continuous Collision Detection with penalty forces. The method approximates the
time of collision using continuous collision detection and computes the impulses needed for
resolving the collision. Furthermore, implicit penalty contact [196] treats penalty forces in an
implicit way, resulting in stable contact between many objects. Additionally, friction forces
are often modeled using anchor forces.

Constraint-Based Contact Methods Constraint-based contact methods prevent penetra-
tion of objects by constraining the motion of the degrees of freedom in a particular direction,
see Figure 2.9b. A constraint measures the actual penetration depth, or the volume of the
intersection. The contact solver solves the obtained Constrained Optimization Problem such
that each constraint measures no penetration at the end of the time-step. Per constraint a
Lagrange Multiplier or Karush-Kuhn-Tucker Multiplier [106] is computed that represents an
impulse that resolves the collision. In addition to this, also friction can be modeled through
constraints by coupling the non-penetration and friction multipliers. Although this approach
seems straight-forward, in practice it is very difficult to obtain a good coupling between the
non-penetration and frictional problem. The non-penetration multipliers influence the fric-
tional multipliers and vice-versa. Furthermore, when the collision detection phase generates
the collision points, a number of these constraints may actually be similar, resulting in de-
pendencies between the constraints. This can eventually result in an overdetermined system,
which does not have a unique solution.

2.4.7 Constraint Solvers

Constraint solvers are used to solve a problem that is defined in terms of a set of constraints.
In general we can make a distinction between methods that solve the reduced problem by first
constructing the Linear Complementarity Problem (LCP) matrix or Delassus operator (see Equa-
tion (B.13)), and methods that do not create this reduced problem and solve the Mixed Linear
Complementarity Problem (MLCP) directly. Depending on the type and size of the problem,
either the problem can be efficiently solved through LCPs or MLCPs.
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LCP methods LCP methods are a special class of complementarity problems that fit con-
strained problems with rigid body simulations very well. Within these problems, the original
MLCP is converted such that the free variables are separated from the multipliers, resulting
in an LCP [43, 44, 59]. During this conversion, a smaller matrix in R™*™ is explicitly created,
which is often called an LCP matrix or Delassus operator, with m the number of constraints,
see Appendix B.1.5 for more details. Once the LCP matrix or Delassus operator is created, it
solves the pure contact problem. This can be for example solved using a Projected Gauss-Seidel
method that project or clamp the computed multipliers. Furthermore, also sophisticated meth-
ods can be used that model friction accurately. Since the construction of this problem requires
the inverse of the system matrix, it can be efficiently obtained for simulations in which the
system matrix is block-diagonal with small blocks. For more general and larger problems, the
inverse must be obtained differently using, e.g., a Cholesky decomposition or by computing the
inverse matrix by solving n linear problems. Methods that solve the contact problem for simu-
lations in which the system matrix is block diagonal are, e.g., rigid body problems [9, 37, 180],
or hair dynamics [25, 47]. Furthermore, contact with deformable models can be solved using
the Gauss-Seidel-Like method [50], which is also applied for volumetric constraints [2]. Once
the normal and frictional impulses are obtained, they can be applied directly to the original
problem, resulting in a new state of the system.

MLCP methods MLCP methods work in general in a larger dimension compared to LCP
problems. MLCP methods work in the R(**™X(n+m) gpace while LCP methods are in R™™.
In this context n stands for the size of the system matrix and m for the number of constraints.
MLCP methods are often used in cases when it is not easy to transform the problem into
an LCP. These methods are for instance used when the system matrix is very large and not
block-diagonal, such that inverting it or computing the Cholesky decomposition would require
significant computational resources. Methods found in Computer Graphics that apply to large
deformable models and that work in R"+m*(n+m) snace are for instance Iterative Constraint
Anticipation [138] and Staggered Projections [101]. Iterative Constraint Anticipation uses two
nested solvers. The inner solver solves an approximate LCP in which the inverse of the sys-
tem matrix is replaced by its inverted diagonal. Next, the obtained multipliers are applied to
the degrees of freedom in the system matrix by taking the Jacobi decomposition into account.
Next, the right-hand side of the approximated LCP is updated and the LCP is solved again.
Eventually, an optimal solution is obtained. Staggered Projection separates the computation
of the non-penetration and friction multipliers completely. When the non-penetration multi-
pliers are computed by solving a Quadratic Programming (QP) problem, the frictional problem
is kept fixed. When the friction multipliers are computed, the non-penetration problem is kept
fixed. Eventually, the method converges to an optimum. Originally, the method relies on dense
solvers.

2.5 GPU Computing

GPU Computing, or General Purpose GPU (GPGPU) computing is a field concerned with solv-
ing large problems using GPUs. The field itself does not completely fit into Computer Graphics,
but also fits Parallel Systems. GPUs are also used to accelerate numerical methods applied in
several scientific simulation applications.
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Figure 2.10: Schematic representation of current generation GPUs: A GPU is equipped with a number of Streaming
Multiprocessors. Each Streaming Multiprocessor contains a number of Cores and Special Function Units (SFU). Each
Core and SFU can access the shared memory of the Streaming Multiprocessor, which in turn can access the main
memory. Each type of GPU has a varying number of Multiprocessors, Cores and SFUs, but in general each GPU
follows this design.

2.5.1 Graphics Processing Unit

The early Graphics Accelerators were designed for displaying 2D images and sprites using
palettes with a fixed amount of colors. With the introduction of Blitter techniques, fast block-
transfers of images to the frame-buffer were made possible. This resulted in faster operations
on sprites and faster routines for line and polygon drawing. In the following years the 2D
performance, resolutions and amount of colors increased, but still no real 3D acceleration was
available. This came available through additional expansion cards that were dedicated to 3D
graphics only. After that, GPUs were integrated and able to do both 2D and 3D graphics.
With this, also software APIs were designed for standardizing the communication between an
application and the GPU. One notable API is OpenGL [103], which is still the standard today.

The pipeline of the early GPUs were fixed. Typically the application was sending commands
for drawing triangles with several properties, using a particular transformation and projection
to the screen. Using clipping techniques the triangles were clipped against the view volume.
Invisible triangles were not processed further, while triangles that were intersected by the view
volume were subdivided such that they fit the view volume. Finally, the triangles in the view
volume were rasterized resulting in fragments for each pixel for each triangle. These fragments
are then processed further. For example, a depth test can be performed that compares the depth
value of a fragment with other fragments on the same location. Finally, the selected fragments
are drawn on the screen.

With the introduction of shaders one is able to write short programs for manipulating parts
of this pipeline [151]. For example, fragment shaders are used to modify the generated frag-
ments. This also enabled the possibility to perform mathematical computations within these
shaders. The input of these algorithms were stored in textures, and the output was stored in
other textures. By properly managing this ‘pipeline’ one was able to perform a large amount
of numerical operations on the input data. Currently, the fixed pipeline with programmable
shaders is replaced by a fully programmable pipeline with programmable shaders. This enables
the application of GPUs as massive parallel processors that can be completely programmed.
Since these platforms also support single- and double-precision floating point operations, the
hardware is very attractive for any kind of computational intensive tasks. APIs used for this
kind of tasks are CUDA and OpenCL. Figure 2.10 gives a schematic overview of the current
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generation GPUs. For example, the NVidia GTX 980 GPU has a total of 16 Streaming Multipro-
cessor, each with 128 cores and 96 KB shared memory, which makes a total of 2048 available
cores and 1, 536 KB of shared memory. Furthermore, the GTX 980 GPU has a total memory of
4 GB. Within GPU computing one can make a distinction between Memory Bound or Compute
Bound problems, which are further described in the following sections.

2.5.2 Memory-Bound Problems

Memory-bound problems require per floating-point operation a large amount of data. For
example, to perform a component-wise multiplication on two n-sized vectors, one needs 2n
floating-point values to be read from the memory in order to perform one floating-point oper-
ation, in this case a multiplication. Furthermore, the result is written back to a certain memory
location. In total 3n memory operations are needed for performing n floating-point operation.
We assume that the data does not fit in caches or local memory. Problems that fit in this cate-
gory are operations performed on large matrices and vectors, or many finite-difference-based
computations on large grids. In order to obtain the best performance for these problems, one
needs to attain the best throughput of the data from the main memory to the local processors.
Since the total memory throughput on high-end GPUs is about a few hundreds of gigabytes
per second, the peak performance is mainly bound by the memory throughput. For exam-
ple, a GeForce GTX980 has a bandwidth of 336 GB/s, which implies that the component-wise
multiplication of two large vectors will have at most a performance of 28 GFLOP/s, while the
peak-performance of the device is 2306 GFLOP/s for single-precision operations. Therefore it
is very important to optimize the throughput of the data as much as possible. Furthermore,
the performance can be increased by combining operations that perform on the same (or same
intermediate) values. This strategy is also applied in Chapter 3 in which a few operations in
the CG method are performed by the same program.

2.5.3 Compute-Bound Problems

Compute-bound problems are a class of problems for which the number of floating-point op-
erations per floating-point value is bounded by the performance of the cores. Problems that
reach this boundary usually have a large number of floating-point operations per transferred
floating-point value. Examples of such problems are found in Digital Signal Processing (DSP),
filtering and compression methods. Most of these examples require a small amount of data or
re-use data between consecutive computations.

2.5.4 Intermediate Problems

In general most problems are neither purely memory- nor compute-bound, but also other as-
pects determine the final performance of a specific GPU program. For memory-bound prob-
lems one needs to achieve the best throughput of the data from the memory to shared memory.
The maximum bandwidth is reached when the memory bus is saturated. This can be achieved
by issuing a large number of concurrent memory transactions per multiprocessor. While the
multiprocessor is waiting for a relative slow memory transaction, it can issue other memory
transactions, or perform some computations in the meantime. This pipeline therefore increases
the total throughput of the data. This typically occurs for larger problems. If the problem is
too small, the relative high latency will dominate the computation time. Therefore, the size
of the problem can be a measure of the number of issued memory transactions and the av-
erage data throughput. In Chapter 3 this observation is used to determine the performance
of memory-bound problems. Also for compute-bound problems, the size of the problem does
matter. If the problem is too small, one cannot rely on a straightforward parallelization of the
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problem and therefore it is not possible to fully occupy all the processors of the GPU. In many
cases the use of GPUs on small problems therefore results in a slowdown compared to a CPU
version of the same method.

2.5.5 Matrix Storage Schemes and Krylov Subspace Methods

Many physics or mathematical (simulation) problems boil down to solving some large sparse
linear system. Solving these linear systems efficiently on a GPU therefore significantly acceler-
ates the overall computation or simulation method. Methods for solving these linear problems
are for example Krylov-subspace methods. These methods iteratively approximate the solution
by performing a sparse-matrix vector-multiplication (SpMV) in each iteration. Each iteration
moves the current approximation closer to the unknown solution. Depending on the proper-
ties of the matrix, this operation can be the most resource demanding in the method. Optimiz-
ing this operation as much as possible is therefore of key importance for accelerating Krylov
solvers. Since each arithmetic operation in the SpMV operation requires only a few other vari-
ables, this problem can be considered as a memory-bound problem. Therefore, it is important
to make the memory transactions on the GPU as efficient as possible. Using a straightforward
implementation of a sparse-matrix storage scheme and a multiplication operation with a vec-
tor, usually results in a faster execution of the simulation compared to a CPU implementation,
but it is in general not the most efficient with respect to the available resources on the GPU.
Currently, there are a number of different approaches available for storing sparse matrices and
performing a multiplication with a vector, e.g., Compressed Sparse Row (CSR) [67, 86, 194], Di-
agonal Format (DIA), Row-packed formats (ELLPACK/ITPACK), Coordinate list (COO), Packet
format (PKT), Hybrid format (HYB) [18], Block Compressed Sparse Row [34, 183], Jagged Diag-
onals (JDS) [38], Block ELLPACK (BELLPACK) [40]. An extensive overview is given in [62].
Although some storage scheme is preferred over the other for some kind of matrices, the most
important factor is the efficiency of the memory transactions performed by the storage scheme.
Since the performance of the sparse-matrix vector multiplication is very important for various
Krylov methods, this operation has received a lot of attention, see [18, 40, 76, 120, 192]. These
operations are then used in GPU based Conjugate Gradient methods, see [26, 34, 38, 39, 68, 183],
or applied on multiple GPUs [68, 78, 183]. Apart from Krylov methods, also Multigrid methods
have received interest [49, 69].

In Chapter 3 an alternative GPU storage scheme for the BCSR format is presented. By reorder-
ing the individual matrix blocks in memory, large memory chunks can be transferred to the
local processors, containing the blocks for multiple rows in the matrix. By using such mem-
ory transfers, it is easier to attain the maximum throughput of data and so to maximize the
performance of the computations. Since the timings of these memory transactions are very
predictable, it is even possible to approximate the expected throughput for any kind of matrix
stored using this format.
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3.1 Introduction

he Conjugate Gradient (CG) method is a widely-used iterative method for solving linear
T systems described by a (sparse) matrix. The method requires a large amount of Sparse-
Matrix Vector (SpMV) multiplications, vector reductions and other vector operations to be per-
formed. We present a number of mappings for the SpMV operation on modern programmable
GPUs using the Block Compressed Sparse Row (BCSR) format. Further, we show that re-
ordering matrix blocks substantially improves the performance of the SpMV operation, espe-
cially when small blocks are used, so that our method outperforms existing state-of-the-art
approaches, in most cases. Finally, a thorough analysis of the performance of both SpMV and
CG methods is performed, which allows us to model and estimate the expected maximum
performance for a given (unseen) problem.

3.1 Introduction

The Conjugate Gradient (CG) method [88] is a widely-used iterative approach for solving linear
systems. At each iteration the method performs a Sparse-Matrix Vector multiplication (SpMV).
For an M X M Symmetric Positive Definite (SPD) matrix, it provably converges in M iterations
[88]. For non-symmetric matrices, more general iterative methods have to be used, such as the
BiConjugate Gradient (BiCG), BiConjugate Gradient Stabilized (BICGSTAB) or other related
approaches [17, 153, 189]. In practice, the number of iterations required by the CG method
is smaller than M, but the speed of convergence depends on the conditioning of the matrix
[163]. However, even if the method converges in fewer than M iterations, typically a large
number of iterations is still needed. Therefore, improving the speed of the SpMV operation is
an important task, and one way of achieving this is through parallelization.

Modern programmable Graphics Processing Units (GPUs) have a highly-parallel architecture
that provides a vast amount of computing power. This, together with the large memory band-
width of these devices, made GPUs an important means for accelerating certain scientific com-
putations [31, 32, 42, 117]. However, mapping a specific algorithm on such a parallel architec-
ture is in general non-trivial.

The CG and the related numerical methods mentioned above are in fact notoriously difficult to
parallelize efficiently because of their low arithmetic intensity and high memory-bandwidth
demands. Since these methods perform a large number of SpMVs, it is of paramount impor-
tance to achieve the best possible performance for such operations. Depending on the under-
lying problem, different representations can be used for efficiently storing a sparse matrix and
multiplying it by a vector. Additionally, PDE discretizations based on structured grids (e.g.,
typically used with the Finite Difference Method) result in a structured matrix, for which spe-
cialized storage representations can be used, whereas discretizations based on unstructured
grids (e.g., Finite Element-based on tetrahedral grids) yield unstructured matrices. Through-
out this chapter we mainly focus on problems yielding sparse, unstructured matrices. General
formats for representing such matrices are the Compressed Sparse Row (CSR) and its extension
— the Block Compressed Sparse Row (BCSR), see Section 3.2.

In this chapter, first we propose fast BCSR-based GPU mappings for the SpMV operation using
CUDA, see Section 3.3. As suggested elsewhere [18, 34] and confirmed by the results presented
here, a block-based layout for SpMV fits very well with the computational model of a GPU.
Therefore, we start with a basic mapping which is subsequently transformed and optimized
in a step-by-step fashion, so that in the end, we obtain an SpMV method that operates close
to the limits of the hardware. Then, in Section 3.4, we propose an efficient GPU mapping of
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the CG method, based on our SpMV operation, accelerated on single- and dual-GPU setups.
Further, in Section 3.5, we introduce a framework for analyzing the performance of SpMVs and
various vector operations performed on GPUs. Since most of these operations are bandwidth
limited, we investigate the behavior of the memory throughput with respect to the problem
size. Furthermore, we expect the performance of the CG method to be mainly driven by that of
the SpMV operation, while the scalability among multiple GPUs should be greatly influenced
by the bandwidth difference between the GPU memory and the inter-GPU throughput. Indeed,
since the communication bandwidth between multiple GPUs is an order of magnitude smaller
compared to the memory bandwidth on the GPUs itself, not all problems scale well across
multiple GPUs [72]. Thus, estimating the performance of such parallel systems gives insight
into the scalability issue, and enables one to answer questions like ‘How many GPUs can be
used to solve the problem efficiently?” or ‘What performance can be expected for a given
problem?’.

Since all operations appearing in the CG method are bandwidth limited (low arithmetic inten-
sity), the behavior of the data throughput is studied and modeled using a mathematical model,
see Section 3.5. First, the performance estimates through the proposed model are compared
and checked against actual (measured) performance figures, on a number of linear systems.
Comparisons are performed for different settings of the SpMV operation, using one or two
GPUs. Then, a number of maps are computed (through extrapolation), which allows one to
estimate the maximum and average performance of the CG method, given some parameters
of the matrix describing an (unseen) problem, see Section 3.6. Such performance estimates
can be used to quickly check if the method performs well on the given hardware, thus allow-
ing the user the possibility of considering a different hardware setup. For instance, the user
can choose to increase/decrease the number of GPUs used, or he/she can decide to even use
the CPU, for better performance. In Section 3.7 we discuss additional aspects influencing the
overall performance of the CG method, such as scalability for future devices, matrix reordering
schemes and performance figures for double-precision computations.

Please note that throughout this chapter we focus on the CG method, but our model can also
be used for the analysis of related Krylov-subspace methods, like the BiConjugate Gradient
(BiCG) or BiConjugate Gradient Stabilized (BICGSTAB) method [17, 153, 189], or other numer-
ical algorithms which perform SpMV and vector operations.

3.1.1 Previous and Related Work

The CG method and the SpMV operation have been implemented on various SIMD (multi-
core) platforms. In [192] an overview is given on the performance of the CSR-based SpMV
operation for a number of modern CPU architectures. A similar comparison is made in [194],
where the CG method is implemented on Woodcrest CPUs and NVidia 8800GTX GPUs. The
authors report a speedup of about 3 times when using the CSR format on the 8800GTX GPU.

GPU implementations of the CG and multigrid sparse solvers were presented by Bolz et al. [26].
Their methods rely on the programmable graphics pipeline of modern GPUs and were imple-
mented using fragment shaders. Sparse matrices are stored in the CSR format, enhanced by
an additional array for storing the main-diagonal elements. The work of [34] is closely re-
lated to ours, in that they present CUDA-based GPU mappings of the CG and SpMV operation
using the BCSR format. However, since their methods are not optimized, e.g., by using coa-
lesced memory accesses, the peak performance of the underlying hardware was not reached,
see Figure 3.9.

31

Conjugate Gradient on GPUs H



Conjugate Gradient on GPUs u

3.1 Introduction

Bell and Garland [18] propose several methods for efficient sparse matrix-vector multiplica-
tion, which take into account the structure of the input matrices. They implemented efficient
multiplication routines for various sparse matrix representations, such as the Diagonal format
(DIA), Row-packed format (ELLPACK/ITPACK), Coordinate list (COO), Compressed sparse
row (CSR), Packet format (PKT) and a hybrid format. Their hybrid layout is most suitable for
unstructured matrices and delivers in general the best performance for such matrices. This
approach stores a part of the matrix using ELLPACK and the remaining elements using the
COO format. It is known that ELLPACK becomes inefficient if the numbers of elements per
row varies greatly [18, 40, 120]. Although extensive results were provided, a complete analysis
of their methods was not performed. However, they did suggest that the use of blocks may
potentially improve the performance even further, but this was left yet to be explored. This
extension was first presented by Monakov and Avetisyan [120]. These authors introduced a
hybrid SpMV operation as a combination of the BCSR and BCOO format. Splitting the ma-
trix and choosing the representation format is done using dynamic programming, but this
approach has large memory requirements. According to their performance evaluation, 4 X 4
blocks seemed to yield the best efficiency, but no thorough analysis was performed to support
this finding.

Cevahir et al. [38] propose an enhanced jagged Diagonals (JDS) format, which reorders the
matrix according to the number of non-zeros per row, and stores it similar to the CSR method.
In [39] a parallel implementation of the CG method on a GPU cluster is presented. For the
SpMYV operation, their enhanced JDS format [38] along with the other formats from [18] were
considered. For a given problem, the best layout for the SpMV operation is found by first
benchmarking the performance of each individual format, and then selecting the one which
delivered the fastest run. This is clearly disadvantageous, since first the input sparse matrix
has to be off-line converted to a number of different layouts, which are then used to perform
the SpMV operation.

In [40], the so-called BELLPACK method for SpMV multiplication is introduced. Although this
method is similar to ours, there are also some important differences. In BELLPACK, first matrix
blocks are identified, created and ordered, similar to [38]. After that, the ELLPACK method is
employed on the ordered blocks. However, BELLPACK does not initially use coalesced memory
transactions when loading the blocks. To improve on that the blocks are stored interleaved
in memory, such that the memory transactions become coalesced, see [40]. As mentioned
above, ELLPACK performs poorly when the numbers of elements per row varies greatly. This
problem is addressed by sorting block rows, prior to storing them in the ELLPACK format.
Since BELLPACK uses one CUDA thread to process one row, the number of registers used
varies with the block size, making an analysis of the method more difficult. Within our method
the number of registers used does not depend on the actual block size, which makes it easier
to analyze its performance.
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3.2 Background

3.2.1 The Conjugate Gradient Method
The CG method [88] is used to solve linear systems of the form

b = Ax, (3.1)

with A a symmetric (AT = A) and positive-definite matrix (y” Ay > 0, with y # 0), and x the
vector of unknowns. In various textbooks (e.g., [17, 35, 145]), it is shown that the CG method
minimizes the quadratic function

fx) = %XTAX —xTh, (3.2)

thus solving for x in Equation (3.1), see Appendix B.2 for more details. Algorithm 2 in Sec-
tion 3.4 shows a parallel realization of the CG method using a Jacobi preconditioner. Please
note that it is straightforward to extend Algorithm 2 to other related methods, such as the
BiConjugate gradient or the BiConjugate gradient stabilized methods. Further, the algorithm
can easily be modified to accept other preconditioners, such as the Incomplete Cholesky [75],
although the computations of such preconditioners are very difficult to parallelize efficiently
because of data dependencies.

Due to the iterative nature of the method (see Algorithm 2), a large number of SpMV multi-
plications have to be performed when solving the linear system. Therefore, it is essential to
optimize the SpMV operation as much as possible. Depending on the structure of the sparse
matrix, different approaches exist to represent the matrix and to perform SpMVs on various
types of hardware. Below, we briefly describe the Compressed Sparse Row (CSR) and Block
Compressed Sparse Row (BCSR) formats; see, e.g., [18] for full details and other Sparse-Matrix
storage schemes.

3.2.2 Compressed Sparse Row (CSR)

The CSR format is a well-known, general storage scheme suitable for unstructured matrices.
Each non-zero element in a row and its column index are stored in two continuous arrays.
Because of this, each row needs a pointer to the first element in the array of data elements and
indices. The number of non-zero elements in a particular row can be determined by computing
the difference between the pointer of the current and the next row. Figure 3.1b illustrates the
CSR storage scheme.

3.2.3 Block Compressed Sparse Row (BCSR)

BCSR constitutes a generalization of the CSR format. This scheme divides the input matrix of
size M X M in blocks of P X Q elements, and stores each non-empty block similar to the CSR
method, see Figures 3.1a and 3.1c. Each block row contains a number of non-empty blocks,
and each block contains a number of non-zero elements. Note that zero elements inside a block
are stored explicitly. For each block, the column index is stored, and for each block row, its
length and pointer to the first block in the block row are represented, see Figure 3.1c.

Since all values of a block are consecutively stored in memory, the use of blocks reduces cache
misses [76], when employed on CPUs, and improves the efficiency of memory transactions on
GPUs. Therefore, larger block sizes should in principle lead to better performances, but they
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Figure 3.1: Compressed Sparse Row (CSR) and Block Compressed Sparse Row (BCSR) storage schemes.

may introduce many zero elements. This usually results in wasted computations and memory
space. We choose to use square blocks of size N X N, with N a power of two. This fits best the
architecture of many SIMD CPUs, as well as the architecture of modern GPUs.

The best block size with respect to performance depends on many aspects. Apart from the
block density, also the problem size, hardware architecture and the runtime GPU configura-
tion determine which block size gives the best performance; in Section 3.7.3, we shall further
discuss this issue.

3.2.4 CUDA Overview

With the release of NVidia’s G80 [129] and NVidia Tesla [109] series GPUs, general purpose
computing was truly enabled via the so-called Compute Unified Device Architecture (CUDA).
In this section we give a short overview of the architecture and its constraints, as exposed
through CUDA; detailed information can be found in [132].

A typical modern GPU consists of a large number of unified shaders which can be used as either
vertex-, pixel- or geometry-shaders in graphics applications. Within the context of general-
purpose computing, a group of unified shaders is called a multiprocessor [129, 131, 132]. On a
global scale, the multiprocessors are connected with the global memory of the device through
a number of memory controllers. On a local scale, each multiprocessor contains a relatively
small amount of memory that is shared among the scalar processors of the multiprocessor
(shared memory).

The communication between the global memory and the individual scalar processors has a
relatively high latency. Between a memory request and the moment when data is available,
each processor has to wait between 400 and 800 clock cycles. However, each multiprocessor
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is able to execute up to 1024 threads, so that this latency can be hidden as follows. When a
thread requests data from (non-cached) global memory, the scheduler activates another thread,
whereas the thread requesting data is put to sleep. Once data becomes available, the idle thread
is activated and allowed to continue its execution. By scheduling a large amount of threads on
a small number of scalar processors, most of the memory latency can be hidden.

Within CUDA, thread scheduling is done automatically. Launching a program on the GPU
(kernel) creates a grid containing a number of thread blocks, each containing threads that will
execute the kernel function. Within each thread block, threads can communicate with each
other through shared memory. However, threads belonging to different thread blocks cannot
directly communicate, since thread blocks can be executed on different multiprocessors and at
different time intervals. Each thread block is divided in smaller warps of 32 threads which are
executed on the scalar processors. For multiprocessors having eight scalar processors, each
instruction is executed four times with different sets of threads. Depending on the shared
memory and register requirements of a kernel, a multiprocessor can run concurrently a given
number of thread blocks. The ratio between the number of active threads and the maximum
number of threads per thread block (1024) is called the occupancy of the kernel [134]. For a
typical problem solved using CUDA, a large number of thread blocks are created which are dis-
tributed over all available multiprocessors. Once a thread block has finished its computations,
a new thread block is started. This process is repeated until all thread blocks have performed
their task.

Threads that belong to the same warp, execute the same instruction. If a thread within a warp
follows a different branch of a conditional statement than the other threads, thread divergence
occurs, and each thread follows both branches of the statement. If a particular thread does not
need the results obtained by following one of the branches, these results are simply discarded.
Although thread divergence reduces the overall performance of a kernel, in some cases it is
unavoidable.

The architecture has several limitations also with respect to the pattern of global memory
accesses. The global memory is divided in a large number of segments with a particular size.
A typical memory segment is 128 bytes wide, depending on the version of the architecture. If
all threads of a half-warp access data stored in the same segment of the global memory, only
one combined memory transaction is initiated. This is known as a coalesced memory access.
If threads access different segments, separate memory transaction must be initiated, which
increases the total latency and should be avoided if possible. With the release of the Fermi
architecture [131] global memory accesses are cached, leading to increased data throughput.

Modern GPUs have a large amount of computing power compared to a single CPU. For exam-
ple, a GTX570 has 15 multiprocessors each containing 32 scalar processors, which makes for a
total of 480 scalar processors running at 1464 MHz. The theoretical peak performance of such
a device is about 1405 GFLOPS, if only floating-point multiply-add operations are performed.
The theoretical memory bandwidth is about 152 GB/s. In order to reach the best performance
for a specific problem, some guidelines must be followed, see [132]. First, the memory transac-
tions should be coalesced. Second, thread divergence should be avoided. Finally, the utilization
level should be maximized, i.e., for a specific task, as much as possible computational resources
should be used. In practice this means that a problem should be solved using a large amount
of threads.
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Figure 3.2: Mapping the sparse matrix on thread blocks. Depending on strategy, B, and By, are computed as in
Table 3.1, given the number of threads T and block dimension N. The dark-gray regions indicate non-existing
(empty) blocks used for padding. Each individual cell represents one matrix block with size N x N. B, indicates the
number of blocks in the largest block row assigned to a particular thread block. Each thread block (T Bi) performs a
number of steps (proportional to [ B, /Bx 1), to cover all assigned matrix blocks. During each step, each thread block
processes collectively B, x B, matrix blocks containing N x N elements. Block rows were first sorted by length as
described in Section 3.3.5. For thread block T B0, the initial indices of the matrix blocks, stored in the BCSR format,
are shown. The matrix blocks assigned to thread block T B2 are reordered as described in Section 3.3.4.

3.3 Proposed SpMV Method using CUDA

The SpMV operation can be mapped to a GPU using different strategies, each with its own
advantages and disadvantages. In general, mapping a certain problem to a GPU starts with
identifying those parts of the algorithm that can run independently from other parts. Within
the SpMV operation this is clearly the computation of a single element in the result vector.
Throughout this section we shall seek for a GPU mapping of the SpMV operation which gives
the best overall performance.

Thread blocks offer the lowest level of parallelism on GPUs, so they are used to compute one or
multiple elements of the result vector. Figure 3.2 shows how a sparse matrix, stored using the
BCSR format with N X N blocks, can be mapped to a GPU using CUDA. The actual mapping
depends on the number By of block rows processed by each thread block, and the number
By of matrix blocks processed collectively per block row, see Table 3.1. The total amount of
thread blocks executed concurrently on a GPU depends on the number of multiprocessors and
the number of active thread blocks, and represents the occupancy of a kernel [134]. Table 3.1
defines and describes each parameter appearing in Figure 3.2 for each different strategy. Since
the warp size is 32, we use square blocks of dimension N, where N is a power of 2. This
choice results in easy-to-implement kernels and reduces the amount of inactive threads. For
each different mapping, each individual matrix block is processed by threads with consecutive
thread indices. For an N X N matrix block with index i, threads ix NX N till i+ 1) X NXN —1
perform the computations and data lookup. Here i represents the index of the matrix block in
the current step in row-major order, starting with zero, which should not be confused with the
index of the block in memory.
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Figure 3.3: Raw performances for the SpMV operation by our mappings, with varying block sizes, performed using
a GTX280 GPU.

Parameter H Description H Block row ‘ ‘ Warp ‘ ‘ Multiple block-row

By Number of collectively processed ma- ﬁ >, N&/N > 1
trix blocks per block row.

By Number of collectively processed block 1 <« % <ix ﬁ
rows per thread block.

Br = By% Total number of thread blocks needed % >, ]}4\1>><<VTV > @
to cover the sparse matrix.

Steps = g—; Total number of steps needed to pro- B'X¥XN <« w <ix B,
cess all matrix blocks per block row.

N Dimension of one matrix block, which is a power of 2. Usually 1, 2, 4 or 8.

T Number of threads per thread block, usually 128 or 256. Remarks

w Warp size = 32. * Holdsif T > W.

M Matrix dimension. w% Holdsif N < 4.

B, Largest number of matrix blocks per block row per thread block.

Table 3.1: Parameter definitions for each mapping strategy, see Figure 3.2.

The following subsections describe the three proposed basic strategies presented in Table 3.1:
block row mapping, warp mapping and multiple block-row mapping (MBR). Each strategy maps
the computations differently among the available threads of one thread block. On top of the
best basic strategy, we apply a few optimizations which further increase the performance, see
Sections 3.3.4 to 3.3.6.

To estimate the efficiency of each mapping with varying block sizes, we compute what we
call ‘raw-performance’, defined as the number of GFLOPS achieved, if each matrix block had
a density of 100%, i.e., each block contained N X N non-zero elements. Figure 3.3 shows the
raw-performance of each mapping for the set of matrices in Table 3.4. We prefer to use raw-
performances instead of actual (measured) performances, because they better reflect the dif-
ferences between each mapping.

3.3.1 Block-Row Mapping

‘Block-row mapping’ assigns one block row to one thread block. In each step, each thread
within a thread block loads one matrix element and its corresponding vector element from
global memory. Each vector element is loaded by first computing its index using the column
index of the matrix block and the thread index. Once both matrix- and vector-elements are
loaded, they are multiplied and added to a per-thread intermediate value. When all matrix
blocks of the current block row are processed, the intermediate values are reduced (addition
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operation) to a column vector of size N. Finally, after reducing N row vectors, the result is
stored in global memory. Note that B, = 1 for this strategy, i.e., one block row is processed by
one thread block.

The number of collectively-processed matrix blocks per block row, By, is computed using the
formulas in Table 3.1. Since each thread block processes exactly one block row, a large number
of thread blocks (Br) are needed to cover the whole matrix. Since in each step a large number
of matrix blocks are processed together, the number of steps performed by each thread block
is small. Thus, computations can be wasted if B, is not a multiple of By. For example, if
N = 1, then By = T, which implies that a number T of 1 X 1 matrix blocks are processed
together. In general T equals 128 or 256, which means that B, must be a multiple of 128 or 256
in order to minimize the number of wasted computations. Clearly, this is impractical in most
situations. Note that increasing N gives in general better performances, since the amount of
wasted computations is reduced, and the memory transactions for vector elements become
more efficient.

3.3.2 Warp Mapping

‘Warp mapping’ assigns one block row to one warp of threads. The computation of the indi-
vidual elements is similar to the block-row mapping. The difference between both methods
lies in the configuration parameters, see Table 3.1.

Since each block row is mapped to one warp, the number of collectively-processed matrix
blocks per block row is smaller than with the block-row mapping strategy. This implies that the
number By, of block rows processed per thread block is larger. Since By is smaller, the amount
of wasted computation is in general smaller compared to block-row mapping. Furthermore, the
number of steps required to process one block row is increased, which results in less additional
overhead and thus a higher memory throughput. Figure 3.3 clearly shows the performance
improvement of this mapping compared to the single block-row case, except for matrix ‘Dense’.

3.3.3 Multiple Block-Row Mapping

‘Multiple block-row’ mapping (MBR) is the opposite of the block-row strategy. Instead of pro-
cessing multiple blocks belonging to one block row, the mapping is transposed such that in
each i-th step, each i-th block of the block rows is processed together. For each block row,
exactly one block is processed, together with blocks belonging to other block rows. The actual
computation of the result vector is similar to the previously described mappings, while the
layout is different.

Within the MBR mapping, the number B, of matrix blocks processed together per block row
is exactly one. This implies that B, should be as large as possible. Because By = 1, the number
of steps required becomes exactly B,. Furthermore, the number of necessary thread blocks de-
creases. Since the number of steps is maximized and the number of thread blocks is minimized
(while the total amount of work remains constant), the work per thread is maximized. The
main advantages of this approach are that the additional overhead is reduced and less space
and computations are wasted. However, if the variation of row lengths of block rows (assigned
to the same thread block) is large, a large number of threads can become idle. Another potential
drawback is that matrix elements are loaded in a different order than they are initially stored,
which results in un-coalesced memory accesses for specific block sizes. Figure 3.3 shows that
(for all matrices) the performance when N = 1, 2 is smaller compared to warp-mapping, due
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to non-coalesced memory transfers in these cases. However when N > 2, the performance is
similar to that of the warp-mapping. To overcome these problems when N = 1, 2, we use two
reordering steps described below.

3.3.4 Block Reordering

For each mapping strategy, each matrix block is processed by consecutive threads. Furthermore,
blocks are stored at memory locations given by their indices. (The top-most thread block of
Figure 3.2 shows these block indices.) Because of this, memory transactions are coalesced
(when loading the matrix blocks) if B, X N > 16. For the MBR mapping, coalescing becomes
problematic if N < 4, since By = 1. Note that for other strategies this can never happen,
because T > W in all other cases. Figure 3.3 shows this effect happening when N < 4. For
example, if N = 1 and By = 4, each step loads data from 16 blocks that are clearly not stored
in the same memory segment. The first step of the top-most thread block in Figure 3.2 loads
blocks 0 — 3, 14 — 17, 27 — 30 and 39 — 42 from memory.

To overcome this problem, the order of the matrix blocks in memory must be changed, such
that each thread within a half-warp reads from the same memory segment. In Figure 3.2,
matrix block with index 14 of thread block TB0 is moved to position 4, block 4 to position
16, so that the final configuration is similar to that shown for thread block TB2. By reordering
matrix blocks such that those blocks processed within the same step of the same thread block are
consecutive in memory, all memory transactions (required for loading matrix blocks) become
coalesced. In Figure 3.2, all blocks within TB2 are reordered such that all threads read from
consecutive memory locations, while all threads assigned to TBO read from non-consecutive
memory locations. However, if N = 4, this problem is solved, since each half-warp reads
exactly one matrix block from memory. Since blocks now are stored at different memory
locations, all blocks that are loaded within each step are consecutive in memory, for any size
of N. This reordering strategy boosts significantly the performance of the SpMV operation for
matrix blocks with N < 4, as shown in Figure 3.3.

If block rows within one thread block have different lengths, or if B, is not a multiple of
B, empty matrix blocks must be added until each block row assigned to the same thread
block has the same amount of matrix blocks. This enables an efficient computation of the
memory locations of the blocks, given the thread-id’s, step number and a starting offset for
the current thread block. Once each thread has computed a memory location for the first step,
it is increased by the number threads T, for each following step. Further, since after padding,
each block row processed by a thread block has the same length, we do not have to check if the
currently processed block exists. This eliminates the possibility that thread divergence occurs
at this stage.

If the block rows are sorted by their length, described in Section 3.3.5, the number of addi-
tional empty blocks is reduced since block rows with similar lengths are processed together,
see Figure 3.2. Furthermore, reordering the matrix blocks does not affect the structure of the
matrix: blocks are only stored at different memory locations, but the structure of the matrix
remains untouched.

For looking-up vector elements used to multiply with one matrix block, the column index of
the matrix block is required, see Figure 3.1c. These indices are stored in the same order as
previously described. All threads that are used to load one particular matrix block, also load
the column index for that block. Since each thread accesses the same memory location, and
because column indices are stored in the same order as for the matrix blocks, this transfer is
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always coalesced. Using the column index, block-size and thread index, the index of the vector
element is computed and used for looking-up a vector element. This lookup is only coalesced
if N > 4. For smaller block-sizes, threads within a half-warp can read data from multiple
memory segments. In this case, multiple transactions (one per memory segment) are needed.

3.3.5 Block-Row Sorting

Sorting block rows by their lengths results in an ordering so that block rows with similar
lengths are spatially close to each other. Thus, sorting reduces the variation of block-row
lengths for block rows assigned to the same thread block, as shown in Figure 3.2. This in
turn results in a more balanced computation within one thread block, leading to an improved
performance. Furthermore, the amount of empty matrix blocks used for padding (required
after reordering the matrix blocks) is reduced. As shown in Figure 3.3, sorting improves the
performance in most cases. Additionally, for matrices with a large variation in row-lengths
(e.g., ‘Circuit’ and ‘Webbase’), an even larger improvement is obtained, since the amount of
added empty blocks is significantly reduced. Note that sorting block-rows does not influence
the performance of matrix ‘Dense’. This matrix has homogeneous row lengths, so sorting does
not change the order of the rows.

Since in general, the order of the block rows is changed, one extra index per block row has to
be used, such that the result is stored at the right position in the result vector. This ensures that
sorting the block rows does not change the result of an SpMV operation. Since only one extra
value is transferred per block row, the added overhead is negligible while the improvement
can be significant. Note that sorting block rows improves the performance only if B, > 1. If
By = 1, no sorting is required since only one block row is processed per thread block.

3.3.6 Fine Tuning

The MBR mapping yields in most cases the best performance. One drawback of this mapping is
that the amount of thread blocks is relatively low compared to the block-row mapping strategy,
while the number of computations per thread is high. For example, using the MBR mapping,
matrix ‘Dense’ with M = 2000, 256 threads per thread block and N = 1, each thread block
maps to 256 rows in the matrix. So, in total 8 thread blocks are used for the multiplication
operation. Clearly, this number is too low to reach a good utilization of the GPU. However,
by setting B, = 2, twice the amount of thread blocks are created because By is halved, leading
to better performance. Note that another way of increasing the amount of thread blocks is by
increasing N, see Table 3.1. Additionally, for matrices having a high variation in row length,
increasing B, further reduces the number of empty blocks required for block-row padding,
which also results in better performance figures, see Section 3.6.1.

3.3.7 Final SpMV Mapping

Throughout this chapter we use the MBR mapping combined with block-row sorting and block
reordering. Because the number of thread blocks is the smallest, and the number of steps is the
largest (Table 3.1), the amount of work per thread is the largest among our mapping strategies.
In general, this results in a higher memory throughput, as shown in Figure 3.3. Finally, in a
few cases it is worthwhile to increase By (see ‘Best’ performance in Figure 3.9), however for
our performance analysis from Section 3.5 we have used By = 1.
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Figure 3.4: Block distribution over two GPUs. Each GPU is assigned a similar amount of matrix blocks: here, each
GPU processes 19, 4 x 4 matrix blocks, distributed over a (different) number of block-rows.

Further, textures are used to enable cached memory accesses, and thus to improve the mem-
ory throughput when fetching vector values, similar to [18]. The effects of cached memory
accesses is significant if N < 4. For N > 4, the improvements are minimal, since the mem-
ory transactions are already close to optimal. Finally, the results in Section 3.6 show that this
method delivers the best performance in most of the test cases.

3.4 Parallel (Multi-GPU) Conjugate Gradient

Algorithm 2 shows the pseudo-code of our parallel (multi-GPU) Jacobi-preconditioned CG
method. In the following subsections the individual steps of this method will be explained
further.

3.4.1 Parallel SpMV

Since the computation of one element in the result vector is independent from the computation
of other elements in the result vector, the SpMV operation is parallelized by distributing the
computation of the elements in the result vector over the available GPUs.

Because the BCSR format represents a sparse matrix by a collection of block rows, the matrix
is divided in a certain number of segments of consecutive block rows, where each segment
has a similar amount of matrix blocks. Each segment is then mapped to one GPU. Sorting the
block rows as described in Section 3.3.5 is preferably done after the segments are created. If
sorting is performed prior to segmentation, this results in an unbalanced GPU load, i.e., the
block rows assigned to the first GPU will generally be longer than the block rows assigned to
the other GPUs. Note that in order to perform an SpMV operation, vector x must be available
to each individual GPU. Accordingly, sub-matrix A; of (global) matrix A, stored on GPU i, is
multiplied by x, see Figure 3.4. The result of the SpMV operation on GPU i, is b; = A;x, where
b; is a vector which size corresponds with the number of rows of sub-matrix A;, Lines 1 and 15
of Algorithm 2.
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3.4 Parallel (Multi-GPU) Conjugate Gradient

Algorithm 1: parallel_reduction(x;, n, i)

Input : Vector x;, n: number of GPUs, and i: index of current GPU.

Output: } x;

ri = Zjﬁ"l Xi j /* Parallel reduction */
SyncGPUs()

return Z;I:O rj /* Collect and return x/

3.4.2 Vector Operations

Standard vector operations, like addition, subtraction, scalar multiplication or elementwise
multiplication, can easily be parallelized. Figure 3.4 shows the distribution of vector b over two
GPUs, where each part, b;, matches the number of rows of the sub-matrix assigned to GPU i,
i = 1,...,n, with n the number of GPUs. Other vectors appearing within the CG method are
distributed similarly among the available GPUs, see Algorithm 2.

Since standard vector operations need to access vector elements with the same indices, no
dependencies exist between the data segment of GPU i and the data of other GPUs, i.e., all
required data is stored in the memory of GPU i. This means that it is possible to group such
vector operations in one CUDA kernel, and thus perform a larger number of vector operations
sequentially, without the need to synchronize the GPUs. For example, in Algorithm 2, all vector
operations in Lines 2 to 6 are performed by one CUDA kernel — CG1. This is advantageous, as
shown in Section 3.5.2.

3.4.3 Vector Reductions

A parallel vector reduction [81] using multiple GPUs requires more effort. Since each GPU con-
tains only a part of a complete vector to be reduced, a final reduction needs to be performed
among these parts to yield the final result, see function parallel_reduction (Algorithm 1).
Before the final reduction can be computed (Line 3), each GPU must have finished computing
its (partial) reduction and must have stored its result in the host memory, Line 1. By synchro-
nizing among the GPUs, one can assure that each GPU has finished its work. Finally, each host
thread (initiating computations on one GPU) computes the final reduction result, by collecting
and reducing the results of all GPUs, which were previously stored in the host memory.

In order to prevent race conditions, a synchronization barrier among GPUs would also be re-
quired, after computing the final reduction per host thread. If this synchronization is omitted,
a thread can for example perform a subsequent reduction and overwrite the previous reduc-
tion result. Preventing overwriting previously stored values, without using a synchronization
point, can only be guaranteed if two successive parallel reductions use different storage lo-
cations. In Algorithm 2, function parallel_reduction uses the latter approach, which ex-
plains the need for three temporary vectors tj;, with j = 1, 2,3. Although additional storage
is required, the reduction in the number of synchronization points among GPUs results in
improved overall performance.

3.4.4 Parallel CG

The CG method is parallelized by replacing each vector operation, reduction and SpMV opera-
tion, by their parallel equivalent, see Algorithm 2. Since the parallel SpMV operation requires
a complete vector v, and each GPU stores just a part (v;) of the complete vector, that vector
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has to be reconstructed and updated at each iteration on each GPU. First, each vector part,
vj, is copied to the host memory by host thread i; this is denoted by Vhest i < V; in Line 11.
Synchronizing among the GPUs (Line 12) ensures that after the synchronization point, each
individual part of v is available in the host memory. Then, each host thread copies the other
parts of v to their assigned GPU, denoted by v < Vpq,j in Line 14. Once v is reconstructed
on a GPU, that GPU can start immediately performing the SpMV (Line 15), followed by an
elementwise multiplication in Line 16, which is denoted by ‘-=’.

When vector v; is computed on a GPU, the corresponding part of the complete vector v, stored
on the same GPU, is also updated. This is denoted by v « v; in Line 30, and is combined with
other vector operations in order to increase the memory throughput.

3.5 Performance Analysis

In this section we analyze the performance of the CG method described in Section 3.4. Since the
operations appearing in the CG method are bandwidth limited, the best performance is reached
when the memory throughput is maximized. Thus, here we focus on analyzing the memory
throughput of our method. First, the pure memory throughput is obtained for different kernel
configurations. Next, the actual performance and scalability of the operations are estimated,
which leads to the (maximum and average) performance estimate of the complete CG method.
When multiple GPUs are used, also the memory throughput between the devices plays an
important role. All observations are combined into a model, which is then used to estimate the
theoretical maximum performance and the average performance of the CG method, given the
properties of both the matrix and hardware. Furthermore, this model is also used to determine
the scalability of the CG method, given an unseen linear system. The analysis and performance
estimations are performed on a machine equipped with an Intel Q6600 quad-core CPU and two
NVidia GTX280 GPUs managed by an NVidia nForce 790i SLI chipset.

3.5.1 Memory Throughput Estimation

The CG method consists of two different types of operations: vector operations and the SpMV
multiplication. Each kernel implementing these operations requires a suitable run-time con-
figuration, in which the thread block and grid dimensions are specified. The thread block
dimensions are in general fixed, while the grid dimensions can either be fixed or variable. To
reveal the behavior of each configuration, we have performed a simple benchmark, in which a
number of n vectors of a given size m are loaded from (global) memory. The results presented
in Figure 3.5 were obtained by repeating this test for different vector sizes m and different
numbers n of vectors. For each configuration the same amount of data is transferred.

For fixed grids, the minimum number of thread blocks Br needed to fully occupy the device is
given by Br = 1024 P/T, with 1024 the maximum number of threads per multiprocessor, P the
number of multiprocessors and T the number of threads per thread block. In this case, each
thread executes a loop, and in each step n vector elements are loaded.

With variable grids, By = [m/T], so that the number of thread blocks directly depends on the
problem size and the number T of threads per block. In this case, each thread loads exactly
n vector elements. Therefore, the total number of thread blocks needed to cover the com-
plete computation is much larger than with fixed grids. Since the amount of work per thread
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Algorithm 2: Parallel CG on multiple GPUs.

Input : Matrix A and vector b, c: preconditioner, n: number of GPUs, i: index of GPU i,

TOL: tolerance, and n;;,: maximum number of iterations.

Output: Vector x, with Ax = b.

r; = Ajx; /* SpMV
r;=b;—r; /% CGT
W; = C; - *TIj; /* CG1
Vi = Cj - ¥W;; /* CG1
tl; = w; - *xw;; /* CG1
t2; = v; - *vy; /* CG1
V «— V;; /* CG1

a = parallel_reduction (t1;, n,i);
r = sqrt (parallel_reduction (t2;, n, i));
for k; «<— 0to nj;er Ar < TOL do

Vhost,i < Vi

SyncGPUs();

foreach0 <j<nAj#ido
L V <= Vhost,j>

u; = A;v; /* SpMV
tl; = u; - *vy; /* CG3
t = af parallel_reduction (t1;, n, i);
X; = X; +1vj; /* CG4
r; =r; —tu;; /* CG4
W; = Cj - *Tj; /* CG4
t2; = w; - *wy; /* CG4
B = parallel_reduction (t2;, n, i);
s=pla,a=p;
if f < TOL then

tl; =r1; - *r;; /* CG2

if parallel_reduction (t1;,n,i) < TOL then
L return Xx;

V; = Cj * *W; + SV;j; /*
t3; = v; - *vy; /%
V — Vj; /%

r = sqrt (parallel_reduction (t3;, n, i));

CG5
CG5
CG5

*/
*/
*/
*/
*/
*/
*/

*/
*/

*/
*/
*/
*/

*/

*/
*/
*/
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block is independent of m, the kernel start-up cost (overhead) per thread block is relatively
high compared to the total time used by one thread block, which results in a lower memory
throughput.

The variation in throughput with the number of memory transactions can be approximated
using a sigmoid function, see Figure 3.5. For vector operations, fixed grids deliver in general
the best performance, while variable grids also give satisfactory results if each thread loads
more than one vector, i.e., n > 2. Therefore, all vector operations are implemented using a
fixed-grid approach.

If a fixed-grid approach is used for the SpMV operation, an extra loop is introduced in the
CUDA kernel, which results in a larger amount of registers being used. This negatively affects
the occupancy of the SpMV kernel, and so its performance. Thus, the SpMV operation (Sec-
tion 3.3) uses a variable-grid approach. Since the SpMV kernel already transfers a large amount
of data in a loop, a high throughput is obtained, thus justifying the choice of a variable-grid.

Figure 3.5 shows the graph of the memory throughput versus the total number of transferred
elements. We use the following scaled and shifted sigmoid function to model the memory
throughput

_(logz x—,u) -1
B(x,p,o,v)=v|l+e o , (3.3)

with x the total number of transferred elements, and p, v and o, model parameters. Further,
the Levenberg-Marquardt algorithm [145] was used to fit the sigmoid curve, leading to the
(hardware-specific) parameters given in Figure 3.5. Note that all graphs below, in which Equa-
tion (3.3) is used, are plotted using a logarithmic scale.

In order to reach the best memory throughput, each multiprocessor must be fully occupied,
i.e., each multiprocessor should have at least the maximum number of threads running. Also,
each multiprocessor must initiate as many as possible memory transactions. For example, the
NVidia GTX280 GPU can handle up to 1024 threads per multiprocessor and contains 30 mul-
tiprocessors, hence a minimum number of 30, 720 threads must be active to fully occupy the
GPU. If each thread initiates exactly one memory transaction, each kernel launch introduces
a relatively large amount of overhead compared to the memory latency, hence the relatively
low throughput in this case, see Figure 3.5. Further, to saturate the memory bus, each thread
needs to initiate a large number of memory transactions, such that latencies can be hidden.
Equation (3.3) can be used to approximate the memory throughput for any GPU, however in
Figure 3.5 we show results for the GTX280 GPU. If a particular kernel is bandwidth limited
(similar to those implementing the SpMV and vector operations), one can use this approxima-
tion to estimate the total execution time of the kernel, given the problem size. However, the
computations performed by a kernel do change slightly the estimation parameters.

3.5.2 Analysis of Vector Operations

A number of vector operations, within the CG algorithm, can be combined into a few larger
kernels. This allows better hiding of memory latencies, so that the performance is improved.
Figure 3.6a shows the measured throughput for each combined vector operation and vector
reduction (Red.), whereas Table 3.2 shows the number of floating point operations and trans-
ferred elements for each kernel. Further, Algorithm 2 shows which operations are executed by
which kernel listed in Table 3.2. The data is obtained from both single and dual GPU bench-
marks of the CG method, using a large set of test matrices [48]. The numbers of transferred
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Figure 3.5: Measured and estimated (‘Est’) memory throughput on a GTX280 GPU for fixed grids (solid), with 1 =
17.9,0 = 1.5,v = 119, and variable grids (dashed), p = 17.9,0 = 1.5, v = 109, using an increasing amount
n =1, 2,4, 8 of loaded vectors.

Kernel transactions m  FLOPS U o v

CG1 xX9 xX5 19.2 1.45 94
CG2 X X2 x X1 19 1.45 | 117
CG3 xX3 xX1 19 1.45 | 120
CG4 xX9 xX6 || 19.3 1.45 | 116
CG5 xX6 xX4 || 19.2 1.45 | 106
Red. xX1 xX1 19.7 1.4 120

Table 3.2: Number of memory transactions and FLOPS for each kernel used in Algorithm 2. Here x is the vector
size, and parameters p, o and v are used to approximate the memory throughput of that specific kernel.

elements and FLOPS in Table 3.2, are obtained by counting the number of vectors loaded or
saved by the kernel and by counting the number of floating point operations performed by
that kernel. This information is obtained via Algorithm 2. For example, kernel CG1 load vec-
tors r;, b; and c;, and writes vectors r;, w;, v;, v, t1; and t2;, which makes for a total of x X 9
memory transactions, with x the vector size. Furthermore, five floating point operations can
be identified for kernel CG1. The other numbers in Algorithm 2 are derived similarly.

These results show trends similar to those in Figure 3.5. Note that these kernels actually per-
form a number of computations, so that slightly more time is consumed, which affects the
maximum throughput. Furthermore, one must be aware that Figure 3.6a shows the perfor-
mance versus the number of transferred elements. Figure 3.6b shows the performance as a
function of the vector size x, in which large differences are visible between each kernel. A
kernel processing multiple vectors of size x, initiates more memory transactions. Such kernels
will reach the maximum performance for smaller vector sizes, while kernels processing only
one vector, reach the maximum performance for larger vectors. Therefore we have decided to
combine as much as possible vector operations, such that the performance of these kernels is
increased.

The performance of the vector reduction kernel, Figure 3.6b, is significantly lower compared to
other vector operations. Since the reduction kernel performs only x X 1 memory transactions,
with x the vector size, this kernel only performs well for large vectors. Furthermore, parameter
1 has a slightly higher value, because a complete vector reduction launches at least two kernels.
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Figure 3.6: Measured throughput per combined CG vector operation as a function of the number of memory trans-
actions (a) and as a function of the vector size (b). Lines represent performance estimates using the parameters in
Table 3.2; the dots are the actual measurements. The graph contains results from both single and dual GPU setups.
In the dual-GPU case, individual results of both GPUs are plotted.

For the dual-GPU cases, also some time is spent on synchronization among the devices explains
why the estimations do not agree with the measurements, see Red. 2 GPU in Figure 3.6a. Given
these observations one can conclude that vector reductions can be problematic for the (parallel)
CG method, even though an efficient algorithm [81] was used to implement them.

3.5.3 Analysis of the SpMV Operation

Estimating the performance of the SpMV operation is more difficult because it is influenced by
additional aspects of the matrix, like the average density of the matrix blocks. By estimating
raw performances, the block density is neglected, i.e., we consider that each matrix block con-
tains 100% non-zeros, which artificially increases the number of non-zeros. By doing so, we
get more insight in the behavior of the SpMV operation on the used hardware and the different
kernel mappings, since the measurements are not affected by the average block density. How-
ever, variations between row lengths still influence the distribution of the computations, and
thus the efficiency of SpMV. Figure 3.7 shows the raw memory throughput versus the number
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Block-size transactionsm FLOPS  fimax  Omax Vmax Havg Oavg  Vaog

1x1 2Xe 2xe || 19 1.2 85 19.08 | 1.35 52.12
2X2 2Xe 2Xe || 19.6 1.4 | 135 19.65 | 1.15 80.92
4x4 2Xe 2Xe || 19.9 1.4 | 140 20.39 | 1.28 | 117.70
8x8 2Xe 2Xe || 20.11 1.5 | 145 20.81 | 1.51 | 132.39

Table 3.3: The number of transactions and FLOPS for our SpMV operation using N x N blocks, where e is the total
number of stored elements. Parameters 1, v and o are used to approximate the maximum raw memory throughput
(performance) of that specific SpMV operation.

of memory transactions (per block size), which gives an estimate for the upper limit or maxi-
mum throughput for a particular block size and the average throughput. Note that Figure 3.7
contains measurements from both a single and dual GPU setup for the set of matrices in [48].
For the dual-GPU results, each measurement of each individual GPU is presented. The up-
per limit and average throughput are estimated using Equation (3.3) and the parameters are
given in Table 3.3. Note that this behavior agrees with the observations in Figures 3.5 and 3.6.
The ‘average’ throughput parameters were obtained by fitting the non-linear sigmoidal curve
in the measured data using the Levenberg-Marquardt algorithm. The ‘maximum’ throughput
parameters were obtained by adapting the average parameters such that the envelope of the
measurements fits the sigmoidal function.

The difference between the measured throughput and its estimated upper limit is mainly
caused by the variation of the row lengths. Further, if most rows contain less than 16 blocks,
the expected throughput and performance is usually lower than the upper limit. The 4 X 4 and
8 % 8 blocks usually deliver the best raw performances, whereas 2 X 2 and 1 X 1 blocks also
have less efficient vector lookups. Thus, in general, the larger the blocks, the less the extra
overhead, yet larger blocks can result in a lower block density, which degrades the overall per-
formance. Furthermore, as noted in Section 3.3.7, if N > 4, the lookup of the vector elements
are coalesced by default. This is also clearly visible in the results presented in Figure 3.7. For
N =1and N = 2, this effect is visible as the variation of the measurements compared with the
average throughput, i.e., the difference between the maximum and the average throughput.
The measurements for N = 4 and N = 8 show that the maximum and average throughput are
much more closer to each other compared to the smaller block sizes, as expected.

3.5.4 Scalability

The scalability of the CG method on a single GPU depends on the scalability of each individ-
ual operation. Vector operations scale well if the maximum memory throughput is reached. If
the total number of memory transactions is larger than 5 million, these operations scale well,
see Figure 3.6a. By combining multiple vector operations in a single kernel, the total number
of memory transactions is increased for that kernel, which eventually increases the perfor-
mance, see Figure 3.6b. Unfortunately, vector reductions are problematic, because the amount
of memory transactions is low and the operation itself cannot be combined with other vector
operations. This results in a low memory throughput and a poor scalability. Furthermore, a
vector reduction using multiple GPUs requires some additional synchronization among the
devices, which further degrades the performance and scalability of the method.
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Figure 3.7: Measured raw throughput versus total number of memory transactions for the SpMV operation. The graph contains results from both single and dual GPU setups.

160
140
120
100
80
60
40
20

160
140
120
100
80
60
40
20

Ix1 [ ]
" Max 7
| Avg _
o ° .
..o‘ ® o
& & s ° |
g %ty . o .
CooSde o
Py 8 ) _
/’.‘( °o°
PP PP e ®e® .l
10 10° 10* 10° 10° 107 108 10
Memory transactions
(a) 1 x 1 blocks.
T T T T T T T
4x4 @
" Max . ® ® o o |
| Avg oil,
i
® T
%
/% S
o ’
L o elos-eo- oz 4‘___{2‘. o Ll
10 10° 10* 10° 10° 10 108 10

Memory transactions

(c) 4 x 4 blocks.

In the dual-GPU case, individual results of both GPUs are plotted.

N
O

Raw throughput (GByte/sec)

Raw throughput (GByte/sec)

Conjugate Gradient on GPUs

160
140
120
100
80
60
40
20

160
140
120
100
80
60
40
20

2x2 o
" Max ]
| Avg > =
L ° .é ® i
» o L LI -
M ] .o.
L o _
® PAPIPNIPS PUPPNPN _-’-d". | Lo
2 10° 10 10° 10° 107 108 10°
Memory transactions
(b) 2 x 2 blocks.
T T T T T T T
8x8 ° s §°
" Max *3el Pe_o |
| Avg ; .q«’.ﬁu"’. |
‘% . o®
L ‘V“/} - |
| 0 00 .
.'.r'
- w ° ]
L 00 o _
R
B Ui . 1
’. * \.. | |
10° 107 108 10°
Memory transactions
(d) 8 x 8 blocks.

w

S!SA]EUV 2duewlopsd §°¢



Conjugate Gradient on GPUs u

3.5 Performance Analysis

The SpMV operation scales also well, if the maximum throughput is reached, i.e., when about
5 million memory transactions are initiated. For each element in the sparse matrix, roughly
two values are looked up. One matrix block value, and one corresponding vector value. This
implies that sparse matrices with more than 2.5 million elements can achieve a good scalability.

When the CG method is executed on multiple GPUs, vectors and matrices are divided in parts
(segments), such that each individual GPU processes a part of the vector or matrix, see Sec-
tion 3.4. This division also means that the total number of memory transactions per GPU is
distributed among all available GPUs. Recalling Figure 3.5, a performance drop can be expected
if the throughput does not reach the maximum. If the number of memory transactions is larger
than 5 million, this performance drop is relatively small. Therefore, the individual operations
scale well if the problem is large enough, although the communication between the devices
does affect the scalability of the CG method significantly. Furthermore, when the CG method
is executed using multiple GPUs, extra synchronizations are needed: one for updating vectors
on each GPU, and one synchronization within each vector reduction. However, the time spent
on each synchronization is constant.

3.5.5 Inter-Device Communication

When the CG method, or other similar methods, is executed on multiple GPUs, the GPUs
need to communicate with each other in order to update their current result vector. Since
on our test system, GPUs cannot directly exchange data with each other, each GPU transfers
data via the PCI Express bus and the system memory. Because the bandwidth between the
GPU and the system memory is limited, and in general, an order of magnitude lower than
the bandwidth of the memory bus on the graphics card, this communication negatively and
significantly affects the total performance, see Figure 3.8. The effective throughput between
the GPUs is also estimated using Equation (3.3). On our test system we found the following
parameters, p = 16.7,0 = 1.4 and v = 10 GByte/s, indicating that the maximum throughput is
reached when more then one million elements are transferred. Given this approximation, the
total time for this operation can be estimated for different data sizes.

First generation GPUs were not able to directly communicate with each other. However, by in-
volving the host memory, GPUs could indirectly exchange data, see above. Current generation
GPUs (Fermi) and motherboard chipsets support direct communication between GPUs via the
PCle bus. With the release of CUDA 4.0, a large single address space can be created using Uni-
fied Virtual Addressing (UVA), which encompasses the memory of each individual GPU and the
host memory. Therefore, by interchanging GPU pointers, GPU data can directly be exchanged.
This simplifies the communication mechanism and improves the memory throughput, thus in-
creasing the performance of the parallel CG method, see [130-132, 136].

3.5.6 Performance of the CG Method

In order to evaluate the performance of the CG method, as shown in Algorithm 2, and given the
properties of a specific problem, the maximum and average performances are estimated. Since
all operations appearing in the CG method are bandwidth limited, the memory throughput
is used to estimate the total running time. Given the number of transferred elements and
the corresponding estimated memory throughput, the time per iteration T(x, e) is obtained as
follows,

T(x, e) = Tspmo(e) + Tega(x) + Tegs(x) + Tega(x) + Tegs(x) + 3Trea(x), (3.4)
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where Tspm, denotes the time spent for the SpMV operation, Tcg; on vector operations of
kernel CGi, and T,.q4 is the vector-reduction timing, e the total number of elements stored in
the matrix (including the stored zeros) and x the dimension of the matrix and vectors. Note
that kernel CG1 is executed exactly once and does not contribute to the time per iteration.
Each individual timing in Equation (3.4) is given by

4m

T(x) = (3.5)

B(m, p,0,v)°

with m the amount of transferred elements (which is a function of x or €) and p, v and o
the fitting parameters; each timing can be estimated using the parameters and functions in
Tables 3.2 and 3.3. Since Algorithm 2 executes approximately 3 vector reductions per iteration,
the corresponding timing T,.4 is multiplied by a factor of 3.

The total number of floating point operations per iteration can be computed by
F(x,e) = 2e + 15x, (3.6)

with x the dimension of the problem and e the total number of elements stored in the matrix,
including the zeros stored in non-empty blocks. The raw performance is then given by

_ F(x,e)

Plx,e) = T(x,e)’

(3.7)

were T end F are given by Equations (3.5) and (3.6).

Figure 3.8a shows the maximum raw performance of the CG method, executed on one GTX280
GPU. In general, the more elements a matrix has, the better the performance becomes. This can
be verified by keeping the vector dimension fixed, while increasing the number of elements.
Increasing the dimension of the matrix can have different effects on the total performance. For
matrices having approximately 10° elements, the performance will increase while increasing
the dimension of the matrix and keeping the amount of elements fixed. In this case the total
computation time is dominated by the vector operations, which will perform better for larger
dimension. Contrary, for matrices having more that 107 elements, the performance will de-
crease while increasing the dimension of the matrix. In this case the total computation time is
dominated by the SpMV operation. This operation becomes less efficient when the matrix be-
comes sparser, hence a drop in the total performance in observed. Please note that increasing
the dimension results in more efficient vector operations, while the performance of the SpMV
operation decreases since the matrix becomes sparser. If the SpMV operation dominates the
total computation time, the total performance will decrease. If the vector operations dominate
the total computation time, the performance will increase.

In order to estimate the real performance, the raw performance of the SpMV operation is mul-
tiplied by the average density of the matrix blocks, i.e.,

F(x,e,dn) = 2edy + 15x, (3.8)

with dy the average matrix-block density for a NxN block. Furthermore, if the matrix contains
rows with uneven lengths, a large number of computations are not contributing, due to the
added empty blocks (Section 3.3.5). Note that it is difficult to quantify this lost performance,
because it requires a lot more information about the input matrix and the used hardware.
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3.5.7 Performance of the Parallel CG Method

The parallel performance of the CG method is estimated similarly, but two GPUs run in parallel
with approximately 50% of the data. In this case, the communication between the devices and
the synchronization time also affects the performance of the parallel CG method. In general,
the total time per iteration using n GPUs becomes

x e x e x e
T, (x, e) = max (T1 (—, —) T (—, —) RN (—, —)) + Tige(x n) + 4Tsync, (3.9)
n'n n n n'n

where T; is the computation time of GPU i, for the sub-matrix (segment) stored on that GPU,
Tiqc is the time spent on communication (Section 3.5.5) and Ty is the average time spent for
synchronization (35us on our test system). Each GPU has to copy an x/n-sized vector to the
main memory, then (n — 1), x/n-sized vectors are copied to n GPUs, which yields a total data
transfer of x n elements. If GPUs are able to communicate directly using the Unified Virtual
Addressing, each GPU transfers x/n elements, hence T;4.(x n) becomes T;g.(x).

Figure 3.8b shows the maximum raw performance of the CG method, executed on two GTX280
GPUs. Furthermore, Figure 3.8c illustrates the speedup S = T/T, of the CG method accord-
ingly, given the parameters of the problem. The thick black line represents the region where
the speedup S = 1. For problems falling below that line, a slowdown can be expected, while
for cases above that line, a speedup should normally be obtained. For different systems and
GPUs the exact location of this line may vary. This ‘map’ quickly shows if it is worthwhile to
use multiple GPUs for a particular problem.

Figures 3.8d to 3.8f show the average raw performance using one and two GPUs and the
speedup when two GPUs are used. For these plots the average parameters in Table 3.3 were
used. Section 3.6.2 compares the timing results for a large set of test matrices with the average
estimated time derived by applying the method described in this section.

The density of the matrix blocks dy, does not have a significant influence on the speedup, i.e.,
on the blocks stored on each GPU, the average densities are similar, such that the performances
on each GPU are similar. Hence, the speedup will not be affected significantly.

3.6 Results

In this section the results of our SpMV implementation and (parallel) CG method are pre-
sented. Both our SpMV and CG methods were benchmarked using different collections of test
matrices/problems. The machine used for benchmarking was equipped with an Intel Q6600
quad-core CPU and two NVidia GTX280 GPUs managed by an NVidia nForce 790i SLI chipset;
some of our benchmarks were also conducted using an NVidia GTX570 GPU.

First, in Section 3.6.1 the results of our SpMV implementation are compared to those in [18,
34, 135]. Next, the actual and estimated performances of our CG method using one and two
GPUs are used to verify the model presented in Section 3.5, see Sections 3.6.2 and 3.6.3. Fi-
nally, in Section 3.6.4 we compare the performance of our CG implementation to a similar
implementation using the CUSP library [19], on different GPUs and with different precision
settings.
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Figure 3.8: Estimated maximum (a)-(b) and average (d)-(e) raw-performances and speedup ((c) and (f)) for the CG method using 4 x 4 matrix blocks. Black lines depict dense
and diagonal matrices, whereas the region between them represents sparse matrices. The black curve in (c) and (f) represents the area in which the speedup is approximately
one.
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3.6 Results

Name Dim (x10%)  nz (x10°) max avg d; dy ds
Dense 2%2 4 2000 | 2000 | 1.00 | 1.00 | 1.00
Protein 36 X 36 4.3 204 119 | 0.86 | 0.66 | 0.48
FEM/Spheres 83 %83 6 81 72 | 0.77 | 0.55 | 0.34
FEM/Cantilever 62 X 62 4 78 64 | 0.75 | 0.54 | 0.35
Wind tunnel 217 x 217 11 180 53 | 0.82 | 0.70 | 0.51
FEM/Harbour 46 X 46 2.3 145 50 | 0.77 | 0.55 | 0.37
QCD 49x 49 1.9 39 39 | 0.64 | 0.47 | 0.28
FEM/Ship 140 X 140 7.8 102 55 | 1.00 | 0.63 | 0.34
Economics 206 X 206 1.2 44 6| 0.29 | 0.10 | 0.04
Epidemology 525X 525 2.1 4 41041020 |0.05
FEM/Accelerator 121x121 2.6 81 21 | 0.64 | 0.23 | 0.08
Circuit 170 X 170 0.95 353 6 | 0.40 | 0.15 | 0.06
Webbase 1000 x 1000 3.1 4700 31047 | 0.21 | 0.09
Rail 1092 x 4 11279 56181 31048 | 0.20 | 0.03

Table 3.4: Properties of the test matrices from [192]. Dim is the dimension of the matrix, nz the total number of
non-zeros, max the largest number of non-zeros in a row and avg is the average number of non-zeros per row;
dn is the average block density when the matrix is represented using N x N blocks. d; = 1 for all matrices.

3.6.1 SpMV: Performance Comparison

Figure 3.9 shows the results of our SpMV approach as described in Section 3.3.7 for varying
block sizes. ‘Best’ denotes our best result after increasing parameter By as described in Sec-
tion 3.3.6. ‘NV Hyb’ denotes the hybrid method of Bell and Garland [18] (implemented in CUSP
0.2, [19]), ‘Best CNC’ shows the best results obtained by Buatois et al. [34] and finally, ‘CUS-
PARSE’ denotes the results of the CUSPARSE library [135] from CUDA 4.0 in which the CSR
storage was used. The test set used in this benchmark was introduced in [192] to evaluate the
performance of the SpMV operations on various multi-core platforms; some of the properties
of the test matrices are given in Table 3.4. Finally, we have performed this benchmark on both
a GTX280 and a GTX570 GPUs, in single and double precision.

The results in Figure 3.9 show that our method gives the best performance in most cases,
except for matrices that have very few non-zero elements per row. Since such matrices have
in general a low average block density (dy in Table 3.4) for larger blocks, they generally cannot
benefit from the BCSR storage format. For example, in the worst case scenario, the usage of
2 X 2 blocks means that 75% of the computations and memory throughput are useless since
blocks contain only one non-zero element. In fact, matrix ‘Economics’ represents just such an
example: it has on average a block density of 29% for 2 x 2 blocks.

Matrices ‘Circuit’, ‘Webbase’ and ‘Rail” also exhibit poor performance figures. Table 3.4 shows
that the number of non-zeros per row is highly unbalanced. Matrix “‘Webbase’ has on average
three elements per row, yet a few rows contain several thousands elements. In such cases,
a lot of threads become idle, while others are busy with processing very large block rows.
Combining this with the low number of non-zeros per row, makes that these matrices are
difficult to process on GPUs using BCSR. By changing the layout of the mapping as discussed
in Section 3.3.6, the performance is improved, see ‘Best’ performance.

Matrix ‘FEM/Ship’ shows a large performance boost for 2 X 2 blocks compared to 1 x 1 blocks.
Table 3.4 shows that d, = 1, which means that each block contains four non-zero elements.
Hence, no computing resources are wasted. This clearly shows the benefit of the BCSR layout
compared to the others, if blocks have high densities dy.
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Figure 3.9: Single and double precision performances for the SpMV operation using various storage formats performed on a GTX280 and a GTX570 GPUs. Numbers in the
legend indicate block sizes for our method, ‘Best’ indicates our best results after increasing parameter By as in Section 3.3.6, ‘NV Hyb' represents the hybrid format of [18, 19],
‘Best CNC' — the best result obtained by the method in [34] and ‘CUSPARSE’ — [132] the CSR implementation from the CUSPARSE library in CUDA 4.0.
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3.6 Results

Since the set of test matrices in Williams et al. [192] is small, we have also benchmarked the
implementations of Buatois et al. [34], Bell and Garland [18] and ours on a substantially larger
set of matrices. This large set contains all matrices from Harwell-Boeing, SPARSKIT, the sam-
ple collection of The University of Florida [48], Williams et al. [192] and the matrices described
in Table 3.5, making for a total of 486 matrices. We have benchmarked each implementation
on a GTX570 GPU. We found that in 95% of the cases our method performs better than the
hybrid implementation of Bell and Garland. Further, we measured a median speedup of about
8% and a total speedup, with respect to the total computation time (wall-clock time), of about
1.25x%. Because of the large difference between the median and total speedups, after careful in-
spection of the results, we found that our method performed in three cases substantially worse
than the method of Bell and Garland. It turned out that these matrices have highly unbalanced
row lengths, which made our method to perform poorly, see discussion in Section 3.3. After
neglecting these outliers, the speedup becomes 2.5X in favor of our method. The method of
Buatois et al. [34] performed in 33% of the cases better than ours and significantly better than
the hybrid method of Bell and Garland [18]. This happened for most of the matrices contained
in the Harwell-Boeing set. However, in all these cases it turns out that a parallel CPU im-
plementation of Algorithm 2 (using four threads on our quad-core CPU) was still faster than
any of the GPU methods. Finally, comparing the total computation time for the complete set
showed that our method was about 3.7x faster than the best implementation of Buatois et al.
Note that by neglecting the three outliers mentioned above, our method performed 6.1X better
than their method.

Dense matrix-vector multiplication

The very good results obtained by our method for matrix ‘Dense’ inspired us to use our rep-
resentations for sparse matrices to perform matrix-vector multiplications for dense matrices.
We gradually increased the dimensions of a square and dense matrix from 10 to about 8000,
and measured the time taken to perform the multiplication by our methods and function
cublasSgemv from NVidia’s CUBLAS library [133]. Our multiple-block-row mapping using
2% 2 blocks yields exactly the same performance as the CUBLAS function, whereas using 1x 1
blocks performed poorly compared to CUBLAS. All other combinations, except single block-
row with 1 X 1 blocks, perform better than CUBLAS: the maximum performance is about 15%
higher. More importantly, single block-row with 8 x 8 blocks reaches the peak performance at
problem sizes 10 times smaller than when using the CUBLAS function. We chose to use the sin-
gle block-row mapping since the multiple block-row mapping is not efficient if the dimension
is too small.

3.6.2 Performance of our Conjugate Gradient Method

Figure 3.10 shows the performances of our CG method using the SpMV approach from Sec-
tion 3.3 (performed using different block sizes), and the corresponding performance estima-
tions, as described in Section 3.5. Since the estimations are made for a single GTX280 GPU,
we use the same GPU for comparing the results with the estimation. The results in Figure 3.10
are ordered with respect to the dimensions of the matrices. The test set (see Table 3.5 for some
properties) represents a subset of the entire University of Florida sparse matrix collection [48],
in which all matrices are Symmetric Positive Definite.

The best performances were obtained for matrices ‘Bone010’, ‘af_shell3’, ‘nd24k’, ‘nd12k’ and
‘nd6k’ for each block size. As shown in Table 3.5, these matrices have several millions of
elements and have relatively high block densities. Also the maximum and average numbers of
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Id H Name H Dim ‘ nz ‘ max ‘ avg ‘ do ‘ dy ‘ ds H H 1d H Name H Dim nz ‘ max ‘ avg ‘ d, ‘ dy ‘ dg
1 Trefethen 20 20 158 9 4.93 | 0.65 | 0.47 | 0.27 35 bodyy6 19366 134748 9 6.95 | 0.49 | 0.24 | 0.12

meshlel 48 306 8 6.37 | 0.36 | 0.20 | 0.17 36 || Trefethen_20000b 19999 554435 29 27.72 | 0.53 | 0.29 | 0.15
3 Trefethen_150 150 2040 15 12.75 | 0.58 | 0.34 | 0.21 37 Trefethen_20000 20000 554466 29 27.72 | 0.53 | 0.29 | 0.15
4 || Trefethen_200 200 2890 16 13.89 | 0.57 | 0.34 | 0.21 38 smt 25710 3753184 414 | 145.97 | 0.74 | 0.45 | 0.27
5 besstk34 588 21418 47 36.17 | 0.76 | 0.52 | 0.34 39 nd12k 36000 | 14220946 519 | 395.02 | 0.84 | 0.73 | 0.59
6 msc00726 726 34518 88 46.89 | 0.55 | 0.38 | 0.26 40 jnlbrngl 40000 199200 5 4.98 | 0.50 | 0.25 | 0.12
7 || msc01050 1050 29156 128 27.60 | 0.60 | 0.41 | 0.23 41 bcsstm39 46772 46772 1 0.99 | 0.50 | 0.25 | 0.12
8 plbuckle 1282 30644 44 23.64 | 0.54 | 0.36 | 0.27 42 gridgena 48962 512084 17 10.45 | 0.75 | 0.37 | 0.18
9 msc01440 1440 46270 45 32.13 | 0.62 | 0.42 | 0.24 43 Cvqupl 50000 349968 9 6.99 | 0.26 | 0.10 | 0.04
10 || nasal824 1824 39208 42 21.49 | 0.52 | 0.35 | 0.23 44 || ct20stif 52329 2698463 207 51.56 | 0.82 | 0.57 | 0.36
11 Trefethen_2000 2000 41906 22 20.95 | 0.55 | 0.30 | 0.17 45 nasasrb 54870 2677324 276 48.78 | 0.90 | 0.58 | 0.39
12 nasa2146 2146 72250 36 33.44 | 0.76 | 0.60 | 0.44 46 Dubcova2 65025 1030225 25 15.83 | 0.37 | 0.15 | 0.06
13 Chem97ZtZ 2541 7361 101 2.89 | 0.49 | 0.24 | 0.12 47 || qa8fm 66127 1660579 27 25.11 | 0.51 | 0.29 | 0.16
14 nasa2910 2910 174296 175 59.85 | 0.70 | 0.53 | 0.37 48 cfd1 70656 1828364 33 25.87 | 0.46 | 0.24 | 0.13
15 sts4098 4098 72356 784 17.59 | 0.43 | 0.22 | 0.13 49 nd24k 72000 | 28715634 520 | 398.82 | 0.84 | 0.73 | 0.58
16 || nasa4704 4704 104756 42 22.26 | 0.53 | 0.33 | 0.22 50 || finan512 74752 596992 55 7.98 | 0.40 | 0.14 | 0.06
17 crystmo01 4875 105339 27 21.58 | 0.32 | 0.22 | 0.14 51 apachel 80800 542184 7 6.71 | 0.39 | 0.19 | 0.09
18 Kuu 7102 340200 98 47.88 | 0.99 | 0.71 | 0.45 52 thermall 82654 574458 11 6.94 | 0.35 | 0.13 | 0.05
19 || Muu 7102 170134 49 23.94 | 0.50 | 0.35 | 0.22 53 2cubes_sphere 101492 1647264 31 16.22 | 0.28 | 0.09 | 0.03
20 besstk38 8032 355460 614 44.25 | 0.75 | 0.53 | 0.34 54 cfd2 123440 3087898 30 25.01 | 0.55 | 0.30 | 0.17
21 afto1 8205 125567 21 15.29 | 0.63 | 0.35 | 0.18 55 || Dubcova3 146689 3636649 49 24.78 | 0.42 | 0.22 | 0.11
22 nd3k 9000 | 3279690 515 | 364.08 | 0.85 | 0.74 | 0.60 56 bmwecra_1 148770 | 10644002 351 71.53 | 0.75 | 0.49 | 0.28
23 fvi 9604 85264 9 8.86 | 0.50 | 0.32 | 0.16 57 G2_circuit 150102 726674 6 4.84 | 0.45 | 0.16 | 0.06
24 || ted_B 10605 144579 49 13.62 | 0.55 | 0.40 | 0.30 58 || F1 343791 | 26837113 435 78.06 | 0.68 | 0.38 | 0.18
25 ted_B_unscaled 10605 144579 49 13.62 | 0.55 | 0.40 | 0.30 59 inline_1 503712 | 36816342 843 73.09 | 0.69 | 0.39 | 0.21
26 msc10848 10848 | 1229778 723 | 113.36 | 0.80 | 0.56 | 0.34 60 af_shell3 504855 | 17588875 40 34.83 | 0.84 | 0.65 | 0.46
27 cbuckle 13681 676515 600 49.39 | 0.94 | 0.77 | 0.56 61 || parabolic_fem 525825 3674625 7 6.98 | 0.33 | 0.13 | 0.05
28 crystmo02 13965 322905 27 23.11 | 0.32 | 0.22 | 0.12 62 apache2 715176 4817870 8 6.73 | 0.39 | 0.19 | 0.09
29 Pres_Poisson 14822 715804 50 48.26 | 0.73 | 0.47 | 0.31 63 tmt_sym 726713 5080961 9 6.99 | 0.50 | 0.25 | 0.12
30 || Dubcoval 16129 253009 25 15.67 | 0.37 | 0.15 | 0.07 64 || bone010 986703 | 71666325 81 72.63 | 0.80 | 0.58 | 0.37
31 olafu 16146 | 1015156 89 62.81 | 0.89 | 0.69 | 0.50 65 ecologyz 999999 4995991 5 4.99 | 0.49 | 0.25 | 0.12
32 bodyy4 17546 121938 9 6.94 | 0.49 | 0.24 | 0.12 66 thermal2 1228045 8580313 11 6.98 | 0.34 | 0.12 | 0.04
33 || ndék 18000 | 6897316 514 | 383.18 | 0.84 | 0.73 | 0.59 67 || G3_circuit 1585478 7660826 6 4.83 | 0.36 | 0.15 | 0.06
34 bodyy5 18589 129281 9 6.95 | 0.49 | 0.24 | 0.12

Table 3.5: Properties of the test matrices used [48] for estimating the performance of our GPU mapping of the CG method. Dim is the dimension of the matrix, nz the total
number of non-zeros, max the largest number of non-zeros in a row and avg is the average number of non-zeros per row; dy is the average block density when the matrix
is represented using N x N blocks. d; = 1 for all matrices.
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3.6 Results

Block size #GPUs  Average rel. error  Variance

1x1 1 0.18 0.108
2X2 1 0.12 0.037
4x4 1 0.07 0.008
8x8 1 0.06 0.004
1x1 2 0.16 0.042
2X2 2 0.14 0.023
4x4 2 0.11 0.012
8x8 2 0.07 0.006

Table 3.6: Average relative-error, and the variance, of the estimated performance with respect to the measured
performance.

non-zeros per row are close to each other. This implies that each row has a similar amount of
elements, and thus, a more balanced computation. Contrary, matrices ‘F1’ and ‘inline_1’, which
have also a high number of elements, show a large deviation between the maximum and the
average number of non-zeros per row. This implies that computations are unbalanced, which
is reflected in the performances of these matrices.

In general, poor performances are obtained if (i) there is a large difference between the maxi-
mum and average number of non-zeros per row, (ii) the dimension of the problem is too small
or (iii) the number of non-zeros is small. Increasing the block size increases the raw perfor-
mance in general, but also the average block density can decrease, which can result in a lower
actual performance.

Within Figure 3.10 the dashed lines represent the estimated performance for the corresponding
matrices. We have analyzed the average relative error and the corresponding variance of the
relative error, as shown in Table 3.6. From this analysis and Figure 3.10 we can conclude
that the estimated performance comes closer to the measured performance, when the block
size increases. According to Figure 3.7, this behavior is to be expected since the variation
between the maximum and average performances for the SpMV operation is larger if N < 4.
Since the estimated performances are close to the measured ones, our estimation method from
Section 3.5 can be used to compute a first indication of the expected maximum and average
raw performances, on unseen problems.

3.6.3 Performance of Our Parallel CG Method

Figure 3.10 also shows the performance results and the estimated performances for our CG
method accelerated using two GTX280 GPUs. The solid lines show the measured performance,
whereas the dashed lines show the estimated performance for the corresponding matrices.
Table 3.6 shows the average relative error of the estimation.

The largest speedup and performance is obtained for matrix ‘nd24k’. This matrix is relatively
dense, i.e., about 400 elements per row on average, with a dimension of 72,000 and a total of
28 X 10° non-zeros. According to Figure 3.8b a maximum raw performance of 42 GFLOPS can
be expected. Given the density d; = 84%, the maximum expected performance is about 35
GFLOPS, which agrees with the results in Figure 3.10 for two GPUs. The measured speedup
is about 1.7, which also agrees with the observations in Figure 3.8c. The dimension of the
problem is relatively small, which means that the vector operations do not perform optimal,
see Section 3.5. However, most of the computation time is spent on the SpMV operation,
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Figure 3.10: Performance and estimations for our CG methods using one and two GPUs. The x-axis represents the indices of the used matrices, as found in Table 3.5. Table 3.6

CG 1x1 (1 GPU) measured
il CG 1x1 (1 GPU) estimated T
CG 1x1 (2 GPUs) measured
CG 1x1 (2 GPUs) estimated

Matrix

(a) Performance and estimation using 1 x 1 blocks.

CG 4x4 (1 GPU) measured
I CG 4x4 (1 GPU) estimated T
CG 4x4 (2 GPUs) measured
CG 4x4 (2 GPUs) estimated

Matrix

(c) Performance and estimation using 4 x 4 blocks.
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CG 2x2 (1 GPU) measured
il CG 2x2 (1 GPU) estimated T
CG 2x2 (2 GPUs) measured
CG 2x2 (2 GPUs) estimated

Matrix

(b) Performance and estimation using 2 x 2 blocks.

CG 8x8 (1 GPU) measured
I CG 8x8 (1 GPU) estimated T
CG 8x8 (2 GPUs) measured
CG 8x8 (2 GPUs) estimated

Matrix

(d) Performance and estimation using 8 x 8 blocks.

shows the average relative-error and variance of the estimation compared with the actual results for each configuration.
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3.6 Results

GTX280
Method Single-precision ‘ ‘ Double-precision
Time (s) ‘ Speedup ‘ Iterations H Time (s) ‘ Speedup ‘ Iterations
CUSP 3108 | 1.00 (1.00) | 333 (9070) 2500 | 1.00 (1.00) | 264 (4368)
Ours 1285 | 5.73 (2.41) | 320 (8734) 1388 | 5.20 (1.80) | 263 (4329)
GTX570
Method Single-precision I Double-precision
Time (s) [ Speedup [ Tterations || Time (s) [ Speedup [ Iterations

CUSP 2031 | 1.00 (1.00) | 321 (8526) 1675 | 1.00 (1.00) | 263 (4322)
Ours 895 | 5.95 (2.26) | 322 (8352) 1058 | 5.69 (1.58) | 263 (4264)

Table 3.7: Performance comparison for the CG method using our implementation and CUSP [19]. Time represents
the total time needed to solve the complete set of linear systems, Speedup represents the median and average
speedup relative to the CUSP-based implementation, Iterations denotes the median and average number of itera-
tions used to solve the complete set of linear systems.

which is much larger than the time spent on the vector operations. This results in a relatively
large speedup of about 1.7. Note that according to our analysis, reaching a speedup of two is
practically impossible, see Section 3.5.

Figure 3.10 shows that in most test-cases the parallel performance is similar to the performance
of the single GPU case. For these problems it is not worthwhile to use extra computational
resources. However, in a small number of cases, the performance is significantly increased
when two GPUs are used. Our model also reports similar performances and speedups in those
cases. This means that our approach can be used to determine the number of GPUs that would
solve a problem efficiently, given some properties of the corresponding matrix.

3.6.4 Performance Comparison for the CG Method

In this section we compare our GPU mapping of the CG method with a similar one using
the CUSP library [19]. For a fair comparison, we have re-implemented Algorithm 2 (with the
same preconditioner and an absolute tolerance of 1078) using CUSP. We performed a large
number of benchmarks on both a GTX280 and a GTX570 GPUs using single- and double-
precision arithmetic. For each combination we measured the total time to solve a particular
linear system. The set of matrices used for benchmarking is a subset of the University of
Florida Sparse matrix collection [48], obtained as follows. We selected all matrices that were
Symmetric Positive Definite and could fit in the system (and GPU) memory. Furthermore, we
selected all matrices that converged using single-precision arithmetic. Finally, we obtained
a set of 185 matrices originating from various problems. Table 3.7 shows a summary of our

findings.

As can be seen from Table 3.7, our CG implementation performs significantly better than the
CUSP-based one. For each possible combination of precision and hardware, our implementa-
tion performed in about 98 % of the cases better than the one using CUSP. Note that a compa-
rable percentage was also found in Section 3.6.1, in which we compared our SpMV operation
using a larger set of matrices.

Since this test set contains matrices coming from various problems and with very different
sizes, the time required to solve a linear system varies a lot. Since a few large matrices dominate
the total computation time (wall-clock time), both the median and average estimates are given.
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3.7 Discussion

Switching from single to double precision yields similar speedups, but the total computation
time changes slightly. For our implementation, the total time increases on both GPUs, while
the total time for CUSP decreases. Recalling the results presented in Figure 3.9, one can see that
the performance difference between our method and CUSP/Hyb is smaller for double precision
than with single precision. However, our double-precision version is not at all optimized. Fur-
thermore, the median and average number of iterations decrease when using double-precision
arithmetic. In a large number of cases the amount of iterations do not change, resulting in
a higher computation time. Only for the cases in which the number of iterations is reduced
significantly, a better computation time is obtained. In section Section 3.7.4 we further discuss
the differences between single- and double-precision performances.

3.7 Discussion

The analysis performed in Section 3.5 enables us to estimate the maximum and average per-
formance of the CG method, accelerated using modern GPUs. One can conclude that these
estimates are close to the measured performances (Section 3.6), provided that some conditions
are met. First, the number of blocks per block row must not vary greatly. If the variation in
row lengths is large, threads may become idle, so that the overall performance drops. Second,
if the number of blocks per block row is very low, a larger error between the estimation and
the real performance can be expected. If these conditions are met, the average or maximum
(raw) performance can properly be estimated by considering the memory throughput. Fur-
thermore, the larger the blocks, the smaller the variance (Figure 3.7, Table 3.6), and the better
the estimation becomes.

When using two GPUs, a speedup can be expected for matrices with more than 2.5 million
elements, see Figure 3.8. As reported by others [72] and also found by us, a good scalability
of the CG method using GPUs can be achieved when the problem size is large enough to fully
occupy the GPU. Moreover, the bandwidth between the devices plays an important role, see
below.

3.7.1 Scalability for Future Devices

The current trend with GPU development is to increase the number of streaming processors,
raster output units and the amount of memory per GPU. Clearly, this increase will lead to a
higher total performance. However, in order to reach the peak performance, the problem size
should grow accordingly. For example, if the number of streaming processors is doubled, the
maximum performance is reached for problems that are twice as large. If multiple GPUs are
used, the bandwidth between the GPUs becomes critical. If the available bandwidth on GPUs
becomes larger, the bandwidth between the devices will represent even a larger bottleneck.
This makes it even more difficult, especially for bandwidth-limited problems, to achieve a
good scalability using multiple GPUs. Note that such changes can be accommodated by our
analysis framework, by adjusting the value of parameter v for the inter-device communication
time.

Current-generation GPUs support Unified Virtual Addressing [131], such that data stored on
the GPUs can be accessed by other GPUs via the PCle bus. This clearly improves the total
memory throughput when, e.g., broadcasting the result vector to all GPUs. Furthermore, the
communication time in Equation (3.9) will be reduced from xn to x, regardless the number n
of GPUs connected over the PCle bus.
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3.7 Discussion

3.7.2 Matrix Reordering

The differences between the raw and actual performance are caused by the density of the ma-
trix blocks. If matrix blocks are completely filled with non-zero elements, no computations
are wasted. Therefore it is important to maximize the average density of the matrix blocks.
Reordering matrices using the (Reversed) Cuthill-McKee [46], Approximate Minimum Degree
(AMD) [3] and King [104] matrix reordering schemes, does not usually improve the density of
the matrix blocks significantly (results not shown). However, we expect that specific reorder-
ing methods, tailored for the BCSR layout, will lead to better performance figures.

3.7.3 Best Block Size

To answer the question about which block-size performs the best, we carefully studied the
results presented in Section 3.6. First, we have found that for a large amount of matrices in the
Harwell-Boeing set, the dimensions and the number of non-zeros are too small to fully utilize
a GPU. The results showed that in 58% of the cases, blocks with N = 8 give the best results,
even if the average density of the blocks is very low. For the multiple block-row mapping,
increasing N automatically increases the amount of thread blocks, see Section 3.3. This in
turn results in a higher utilization of the GPU. For the remaining cases we have found that
23% of the cases reported the best performance for N = 1, and in 11% of the cases the best
performance was obtained for N = 4.

Inspecting the results obtained using the test set of Williams et al. [192] using a single GTX570
showed that in 50% of the cases, N = 2 yields the best performance. Contrary, the same test
on a GTX280 gives in 35% of the cases the best performance when N = 4, while in 25% of the
cases the best performance was reported when N = 1 and N = 2.

In order to find which configuration yields the best performance, we selected all test cases
(from all benchmarks performed on a GTX570) in which the GPU was faster than the CPU.
We found that in 42% of the cases N = 1 yields the best performance, followed by 25% of the
cases when N = 2.

Since the dimension of the problem, the GPU mapping and the sparsity pattern of the matrices
influence the performance, it is difficult in general to indicate which block size leads to the best
results. However, one can compute the amount of needed thread blocks, given the dimensions
of the problem and the block size. If this number is too small to fully utilize a GPU, increasing
N and/or By will result in a mapping which has a higher utilization and therefore a better
performance.

3.7.4 Double Precision

In this chapter we have used both single (32-bit wide) and double (64-bit wide) precision repre-
sentations within our matrix and vector operations. If the multiple block-row mapping is used
in combination with block reordering and block-row sorting, all matrix blocks are loaded in a
coalesced fashion, also if double precision is used. In this case two memory transactions are
needed. Loading the corresponding vector values also results in coalesced memory transfers if
N > 4, similar to the single-precision case, but with twice the amount of transactions. When
N < 4, memory transactions are not coalesced anymore and require more transactions for
loading the corresponding vector values. In the case of double precision, this does not auto-
matically lead to twice the amount of memory transaction, since the second part of the 64-bit
value is stored in the same memory segment as the first 32 bits. This gives a small improve-
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3.8 Conclusions

ment in these cases. Furthermore, depending on the version of the architecture, bank-conflicts
[132] can occur. For the GTX280 bank-conflicts happen if threads access 64-bit values in shared
memory; for the GTX570 (Fermi) such conflicts do not happen.

We have computed the relative slow-down if one uses double precision. The differences be-
tween the block-sizes is especially visible on the GTX280. When N > 4, the slow-down was
approximately 2x, while for N < 4 it was between 1.25X and 1.75X. A similar slow-down
was measured for the hybrid implementation of [18]. The figures for a GTX570 GPU were
slightly different. For any N we have measured a slow-down between 1.4x and 1.6X, which
was smaller than on the GTX280. According to the architectural differences between the GPUs,
we assume that besides the absence of bank-conflicts, also cached accesses improve the per-
formance when 64-bit data is fetched from the global memory.

Finally, using double precision for solving large linear systems can improve the total computa-
tion time, although individual operations become roughly two times slower. On both GTX280
and GTX570 we have found that for the CG benchmark described in Section 3.6.4, about 50%
of the cases were faster using double precision. Since the accuracy is higher, the CG method
converges faster to the solution, especially for stiff problems. In the remaining cases the CG
method converged in the same amount of iterations, resulting in a larger computation time.
These finding are reflected in Table 3.7.

3.7.5 Textures

To improve the memory throughput of random memory accesses on the GTX280 and older
devices, textures are used frequently. The texture units provide a caching mechanism, which
improves the throughput if the memory transactions are not coalesced and highly random.

Current generation GPUs [131, 132] now provide a cache mechanism for global memory. This
might imply that the used of textures (for caching) is now deprecated. To test this possibility,
the benchmark described in Section 3.6.1 was performed with and without texture cache on
the newer GTX570 GPU. We found that the use of textures still improves the performance
significantly on the newer hardware. When N = 1 and N = 2, the improvement is up to
25 — 50%, while for larger blocks it is minimal and sometimes slightly negative. Also the
implementation of Bell and Garland [18] benefits from the use of textures. Therefore, it is still
worthwhile to use textures if memory accesses are highly random.

3.8 Conclusions

In this chapter we have investigated a number of mappings for block-based SpMV operations
on GPUs, using CUDA. Block row mapping maps one complete block row (a row containing
a number of N X N matrix blocks) to one thread block. This method is straightforward to
implement, but not very efficient, since a lot of computational resources are wasted. Within
this mapping one thread block processes a large number of matrix blocks. By transposing the
block row mapping, the multiple block-row mapping is obtained. This mapping assigns multiple
block rows to one thread block. One thread block processes a large number of matrix blocks,
which belong to different block rows. This has positive implications on the performance, i.e.,
less thread blocks are needed and the amount of wasted computational resources is decreased.
Furthermore, since each thread block processes a larger number of matrix blocks, better mem-
ory throughput was obtained and thus a better performance. This is in general only the case if
N > 4. If N < 4 the data must be reordered to obtain efficient (coalesced) memory transactions
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for loading the matrix blocks. This block reordering significantly improves the performance of
the SpMV operation for matrices stored using the BCSR layout with blocks of size N < 4, if
the MBR mapping is used. Sorting the block rows such that block rows with similar lengths
are processed by the same thread block, increases the performance significantly.

By mapping the computations differently on the GPU, and by applying row sorting and block
reordering, the best performances for the SpMV operation were obtained. Experimental results
showed that our SpMV mapping outperforms existing methods in most cases, and performs
close to the limits of the hardware. Our optimized SpMV operation was used to accelerate the
CG method, given one or multiple GPUs. Together with the optimized vector operations, this
makes (in most cases) our CG mapping about five times faster than existing methods.

We have also provided a recipe for estimating the maximum achievable performance and the
average performance of a (parallel) CG method, given the properties of the problem. This
method can be applied to similar numerical algorithms. Analyzing the memory throughput
revealed a clear trend between the number of memory transactions and the performance. This
analysis has been done for each kernel performing vector operations, as well as for the SpMV
kernel. The resulting trends were modeled by a particular sigmoid function, which was then
used to estimate the memory throughput of each individual operation appearing in the CG
method. Finally, this led to an approximation of the maximum or average performance of the
method. We further extended our performance-estimation framework such that also multiple
GPU setups can be modeled. The results showed that our performance estimates were very
close to the measured performance, and in general, the estimates became more accurate when
larger blocks are used.

In future work, we plan to investigate methods for matrix reordering, suitable for the BCSR
format. Existing matrix reordering methods optimize, e.g., the bandwidth of the matrix, which
does not necessarily result in increased block densities. Further, our analysis may be improved
by taking into account the variations in GPU load, due to block-row padding by empty blocks.
Finally, our method performs very well on matrices for which the variation in row lengths is
not too large.
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4.1 Introduction

Figure 4.1: Effect of external (stretching) forces on an ‘elastic’ dragon.

lastically deformable models have found applications in various areas ranging from me-
E chanical sciences and engineering to computer graphics. The method of Finite Elements
has been the tool of choice for solving the underlying PDE, when accuracy and stability of the
computations are more important than, e.g., computation time. In this chapter we show that
the computations involved can be performed very efficiently on modern programmable GPUs,
regarded as massively parallel co-processors through Nvidia’s CUDA compute paradigm. The
resulting global linear system is solved using a highly optimized Conjugate Gradient method.
Since the structure of the global sparse matrix does not change during the simulation, its val-
ues are updated at each step using the efficient update method proposed in this chapter. This
allows our fully-fledged FEM-based simulator for elastically deformable models to run at in-
teractive rates. Due to the efficient sparse-matrix update and Conjugate Gradient method,
we show that its performance is on par with other state-of-the-art methods, based on, e.g.,
multigrid methods.

4.1 Introduction

Mathematical and physical modeling of elastically deformable models has been investigated
for many years, especially within the fields of material and mechanical sciences, and engineer-
ing. In recent years, physically-based modeling has also emerged as an important approach
to computer animation and graphics modeling. As nowadays graphics applications demand
a growing degree of realism, this poses a number of challenges for the underlying real-time
modeling and simulation algorithms. Whereas in engineering applications modeling of de-
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formable objects should be as accurate as possible compared to their physical counterparts, in
graphics applications computational efficiency and stability of the simulation have most often
the highest priority.

The Finite Element Method (FEM) constitutes one of the most popular approaches in engineer-
ing applications which need to solve Partial Differential Equations (PDEs) at high accuracies
on irregular grids [143]. Accordingly, the (elastically) deformable object is viewed as a con-
tinuous connected volume, and the laws of continuum mechanics provide the governing PDE,
which is solved using FEM. Other popular methods are the Finite Difference Method (FDM)
[177], the Finite Volume Method (FVM) [176] and the Boundary Element Method (BEM) [97]
(see [70, 126]). FDM is the easiest to implement, but as it needs regular spatial grids, it is dif-
ficult to approximate the boundary of an arbitrary object by a regular mesh. FVM [176] relies
on a geometrical framework, making it more intuitive than FEM. However, it uses heuristics
to define the strain tensor and to calculate the force emerging at each node. BEM performs
the computations on the surface of the model, thus achieving substantial speedups as the size
of the problem is proportional to the area of the model’s boundary as opposed to its volume.
However, this approach only works for objects whose interior is made of homogeneous ma-
terial. Furthermore, topological changes are more difficult to handle than in FEM methods
[126].

In this chapter we present a fully-fledged FEM-based simulator for elastically-deformable mod-
els, running solely on GPU hardware. We show that the involved computations can be per-
formed efficiently on modern programmable GPUs, regarded as massively parallel coproces-
sors through Nvidia’s CUDA compute paradigm. Our approach relies on the fast GPU Conju-
gate Gradient (CG) method of [183] to solve the resulting linear system. Since the topology of
the deformed mesh does not change during the simulation, the structure of the sparse-matrix
describing the linear system is reused throughout the simulation. However, during the simu-
lation, the matrix values have to be updated efficiently. To achieve this, we propose a method
that updates the sparse-matrix entries respecting the ordering of the data, as required by the
CG method of [183], see Section 4.5.4. Thanks to the optimized CG method and the efficient
sparse-matrix update procedure, we obtain results similar to state-of-the-art multigrid meth-
ods [49].

The chapter is organized as follows. Sections 4.3 and 4.4 describe the involved discretizations
using FEM. Next, Section 4.5 presents the non-trivial parts of our GPU mapping, i.e., computing
the local matrices, updating the global sparse matrix and solving the linear system. Finally, in
Section 4.6 results are presented and analyzed.

4.2 Previous and Related Work

Bolz et al. [26], and Kriiger and Westermann [105] were among the first to implement CG
solvers on graphics hardware, using GPU programming based on (fragment) shaders. These
authors had to deal with important limitations, e.g., the lack of scatter operations, limited
floating-point precision and slow texture switching based on pixel buffers, as exposed by the
‘rendering-based’ GPU-programming paradigm. One of the first GPU implementations of FEM
is due to Rumpf and Strzodka [152], in the context of solving linear and anisotropic diffu-
sion equations. Related work on GPU-accelerated FEM simulations also include the papers
by Goddeke and collaborators [72-74]. However, the emphasis is on improving the accuracy
of scientific FEM-based simulations. Prior related work with respect to elastically deformable
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models, discretized using FEM, can be found in [84, 96, 124]. They proposed methods which
compensate for the rotation of the elements. Liu et al. [111] also present a FEM-based GPU
implementation. Their results show that the involved CG method dominates the total compu-
tation time.

Since FEM often involves a CG solver, considerable research was done on efficiently map-
ping the CG method and Sparse Matrix-Vector Multiplications (SPMV) on modern GPUs using
CUDA, see [18, 34, 183] and the references therein. Other approaches for solving the result-
ing PDE use multigrid methods, see, e.g., [69]. An efficient GPU implementation of a multigrid
method, used for deformable models, was recently presented in [49]. Although multigrid meth-
ods typically converge faster than CG methods, implementing them efficiently on a GPU is a
much more elaborate process. For example, invoking an iterative solver such as CG, consti-
tutes only one of the steps of a multigrid method, the others being smoothing, interpolation
and restriction.

4.3 Elasticity through the Method of Finite Elements

As common in computer graphics applications (see [124] and the references therein), we em-
ploy a linearized model based on linear elasticity theory [143]. Further, to solve the underlying
PDE we use the Method of Finite Elements with linear tetrahedral elements, see Appendix D.1
for additional details.

4.3.1 Continuum Elasticity

In continuum elasticity, the deformation of a body, i.e., a continuous connected subset M of
R3, is given by the displacement vector field u(x) = [u(x), v(x), w(x)]", where x = [x,y, 2] is
some point of the body at rest. Thus, every point x of the undeformed body corresponds to a
point x + u(x) of the deformed one.

The equilibrium equation of the deformation is usually written in terms of the stress tensor, o.
However, since it cannot be measured directly, one uses Cauchy’s linear strain tensor, €, and
some material parameters to approximate the stress inside the body. Similar to Hooke’s law
for a 1D spring, in 3D one has

o = De, (4.1)

for each point of the body, where D € R%* is the so-called material stiffness matrix represent-
ing material parameters. The elastic force f, acting at a point of the body is given by

f, = Ku = (PTDP) o, (4.2)

with K € R¥3, f, and u € R¥*1, K represents the local stiffness matrix and P € R®® is a matrix
of partial derivative operators, see Appendix D.3 for their derivations.

4.3.2 System Dynamics

Having defined the elastic forces acting in a body, we now derive the equations of motion
required to simulate the dynamic behavior of the object. The coordinate vectors x are now
functions of time, i.e., x(t), such that the equation of motion becomes

mX + cx + f, = fors, (4.3)
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where m is the mass of a body particle at position x, ¢ the damping coefficient, f. the elas-
tic force and f,,; the vector of external forces, i.e., the gravitational force. We approximate
Equation (4.3) using a semi-implicit method, i.e.,

vitl i . . .
m% + CVH—1 + Ku’“ = féxt' (4.4)
X = x4+ Arvit, (4.5)
with ut! = Atvi*! + x! — x°, which can be rearranged as
(m+ Ate + APK) vT = mv' — At (Kx' —Kx* - f,) . (4.6)

4.3.3 Discretization using FEM
Within FEM, the continuous displacement field u is replaced by a discrete set of displacement
vectors U defined only at the nodes of the elements. Within each element e the displacement
field is approximated by

u = N.u, (4.7)

where N, € R¥!? is the matrix containing the element shape functions and
. T
U = [ug, 01, Wi, . . ., Ug, Vg, Wy (4.8)

the vector of the nodal displacement approximations. Next, Galerkin’s method of weighted
residuals is applied over the whole volume V, in which the weighting functions are equal to the
shape functions. Each term in Equation (4.6) is weighted and approximated as in Equation (4.7),
which results in

/ NI (m + Atc + APK) N ¥ dV =
v (4.9)

e

/ mNIN, v dV — At / N7 (KNeic" —KN.x° - Ne?ixt) dv,
14 14

with N7 the weighting functions. The equation above is defined for each individual element
and generates one matrix consisting of the local mass (M,), damping (C.) and element stiffness
(K¢) matrices. Additionally, a local force matrix (f,) is generated, representing the net external
force applied to the object. These local matrices are given by

M, = me/NZNe dv
\4

C.=c / NIN, av
v (4.10)

e
|

= / NZPTDPN, dV
14
fe = ‘/‘NZNef‘exth:
\%4

with m, the mass of element e. See [143] and Appendix D for more details on computing these
matrices.
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4.4 Overview of the Algorithm

Algorithm 3: Simulation algorithm.

1 Compute Qp;
2 foreach element e do
3 L Compute K., Equation (4.10);

4 while simulating do

5 foreach element e do

6 Compute volume v,;

7 Compute R,, Section 4.3.3;

8 Compute K. = R.K.R;'v,;

9 Compute M, = m.Q,ve;

10 Compute C, = cQpve;

11 Compute f.p = R K.xqve;

12 Compute f, = prex,ve, Equation (4.10);

13 Compute f;e = MV — At (foo — Krex' — £.);
14 Compute K;. = M, + AtC, + At?K,;

15 Assemble global K and f using K;, and f;. of elements;
16 Solve Kvi*! = f for vi*1;

17 Update x'*! = x' + Atvi*!, Section 4.3.2;

Finally, the global matrix K € R33" (with n the number of mesh vertices) is ‘assembled’ from
individual element matrices. This resulting system is then solved using the Conjugate Gradient
method for the unknown velocity vi*!, which is then used to update the positions of the nodes,
see Equation (4.5). Equation (4.5) shows a first order method for updating the positions which
can be replaced by higher order methods as described in [96].

Unfortunately, the above equations for simulating elastic deformation only work fine as long
as the model does not undergo large rotations. This is because linearized elastic forces are
used, which are only ‘valid’ close to the initial configuration. Therefore we use the so-called
Element-based Stiffness Warping or Corotational Strain method [84, 124] to compensate for the
rotation of the elements. To extract the rotation part of the deformation, we use the polar
decomposition method proposed in [90]. The rotation-free element stiffness matrix K, then
becomes K. = R.K.R;!, with R, € R!**!? the rotation matrix for element e. Note that this
gives rise to an initial elastic force f,g = R.K,Xo, which replaces the term KN,x° in the right-
hand-side of Equation (4.9).

4.4 Overview of the Algorithm

Algorithm 3 gives an overview of the simulation of elastically deformable models as described
in Section 4.3. First, a tetrahedralization of the polygonal mesh representing the surface of the
object is computed, see Section 4.5.5. Each tetrahedron is considered as an element in FEM.
Then, the initial stiffness-matrices of the elements are computed (line 3); these matrices do not
change during the simulation and thus are precomputed. Additionally, as the shape functions
are constant during the simulation, we can precalculate most matrices from Equation (4.10),
using Q, = f NIN, dV for a unit volume. This matrix is identical for all elements and is
therefore only computed once. After all local matrices have been computed and stored (line 14),
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the global matrix is assembled (line 15). The resulting linear system of equations is solved for
velocities (line 16), which are then used to advance the position vectors (line 17).

4.5 GPU Mapping using CUDA

In this section we describe our GPU mapping of the simulation on NVida GeForce GPUs using
CUDA [132]. First we shall give details about implementing the rotation extraction through
polar decomposition. Then, we describe the computation of the local stiffness matrices which
are used to assemble the global (sparse) stiffness matrix (matrix K in Algorithm 3). The result-
ing system of linear equations is solved using a Jacobi-Preconditioned CG Method.

4.5.1 Rotation Extraction

As mentioned in Section 4.3.3 we have to estimate the rotation of each element in order to
calculate displacements properly. Finding the rotational part of the deformation matrix is done
using a Polar Decomposition as described in [84, 90, 124]. Although a large number of matrix
inversions is involved, this can be done efficiently because small 4 X 4 matrices are used. Since
each matrix contains 16 elements, we chose to map the computations of 16 such matrices to a
single CUDA thread-block with 256 threads.

For computing the inverse of a 4 X 4 matrix we perform a co-factor expansion. Each thread
within a thread-block computes one co-factor of the assigned matrix. Since the computation
of a co-factor requires almost all values of the matrix, memory accesses have to be optimized.
In order to prevent for possible bank-conflicts during the computation of the co-factors, each
matrix is stored in one memory bank of shared memory. Accordingly, the shared-memory
segment (of size 16 X 16 locations) is regarded as a matrix stored in row-major order, where
each column represents a 4x4 local matrix. Therefore, each column (local matrix) maps exactly
to one memory-bank. Since a large number of rotation matrices are computed in parallel, a
large performance boost is obtained.

4.5.2 Local Stiffness Matrices

Solving a specific problem using FEM starts with describing the problem locally per element.
Since a typical problem consists of a large number of elements, the computations involved
per element can be easily parallelized. Further, since the matrices used to construct K, are in
R!2X12 \e map the computation of each individual local element stiffness matrix to a thread-
block containing 12 X 12 threads. The inner loop in Algorithm 3 is implemented using one
or two CUDA kernels, depending on the architecture version. Instead of creating kernels for
each individual matrix operation, we combine a number of them into one larger kernel. Since
data from global memory can be reused multiple times, less global memory transactions are
required, which improves the overall performance.

4.5.3 Solving the Linear System

Given the local element matrices and load vectors, the global stiffness matrix of the system
is assembled. Next, the system has to be solved for the unknown velocity vi*?. The (Jacobi-
Preconditioned) CG method performs a large number of sparse matrix-vector multiplications
and other vector-vector operations. Therefore, solving a large linear system efficiently, re-
quires a fast and efficient implementation of sparse matrix-vector multiplications, which is
highly-dependent on the layout used for storing the sparse matrix. Since three unknown val-
ues (components of the velocity vector) are associated to each mesh vertex, a block with 3 x 3
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elements in the global matrix corresponds to each edge of the tetrahedral mesh. Therefore, a
Block-Compressed Sparse Row (BCSR) format is very well suited for storing the global matrix,
and thus improving the speed of the CG method.

Furthermore, since the vertex degree of internal nodes is constant in a regular tetrahedraliza-
tion (see Section 4.5.5), the variation of the number of elements per row in the global matrix
is minimal. Therefore, we use the optimized BCSR format from [183]. This method efficiently
stores a large sparse-matrix in BCSR format and reorders the blocks in memory to improve
the efficiency of the memory transactions. This fact is very important since the main bottle-
neck of the CG method is the memory throughput. In [183], through extensive experiments,
it is shown that their optimized BCSR layout outperforms other storage formats for efficient
matrix-vector multiplication on the GPU.

4.5.4 Global Matrix Update

Each local matrix represents a set of equations for each individual tetrahedron. To obtain the
global system of equations, each component of each local matrix is added to the corresponding
location of the global matrix. The location is obtained using the indices of the vertices for
that specific element. Since the structure of the underlying mesh does not change during the
simulation, also the structure of the global matrix remains unchanged. Therefore we assemble
the global matrix only once and updates its values every time-step. In this section, we propose
an extension of [183] which allows us to efficiently update a sparse matrix stored in the BCSR
format.

For updating the global matrix, two approaches are possible. Within the first approach (scat-
ter), all values of a local matrix are added to their corresponding values in the global matrix.
When the local matrices are processed on the GPU, many of them are processed in parallel.
Therefore, multiple threads can update the same value in the global matrix at the same time,
which results in race conditions. In order to prevent race conditions from appearing, access to
the values of the global matrix would have to be serialized.

The second approach is to gather per element in the global matrix, the corresponding values
from the local matrices. To do so, the indices of all associated local values are stored per
element in the global matrix. Each index represents the position of the local value in an array
A, which stores the values of all local matrices. Given these indices per global element value,
the local values are looked-up and used to update the corresponding value in the global matrix.

Within the optimized BCSR implementation of [183], the global sparse-matrix is divided in N X
N-sized blocks, Figure 4.2a. Next, block rows are compressed and sorted by length, Figure 4.2b.
Finally, a number of consecutive block rows are grouped and mapped to a CUDA thread block.
Within each group of block rows, the blocks are reordered in memory, such that accessing these
blocks is performed as optimal as possible. Accessing the blocks (for, e.g., a multiplication) is
done as follows. First, all threads of a thread-block (T B0) are used to access the blocks mapped
to it in the first step (step 0), see Figure 4.2c. Each thread computes an index pointing to these
blocks. Next, blocks 0 — 7 are loaded from the global memory. Note that these are the same
blocks appearing in the first column of Figure 4.2b. For the next step, each thread increases
its current index, such that the next set of blocks (8 — 15) can be loaded (step 1). Note that all
block rows must have the same length, and therefore, empty blocks must be padded (blocks
16 and 17).
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Figure 4.2: Updating the sparse matrix: the initial sparse matrix is created, stored and processed, (a), (b) and (c).
Updating the matrix is done by collecting the corresponding values from the local matrices, (d).
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To actually update the data blocks of the global matrix, we use a gather approach. Accordingly,
N X N-sized index blocks are used for each matrix block, see Figure 4.2d. Since the matrix
blocks have a specific ordering, the same ordering is used for the index-blocks. For each step,
a number of sub-steps is performed. Within each sub-step a set of index-blocks is loaded from
memory, given a start offset (i, j or k in Figure 4.2d). Then, for each index-block, its N x N
values (indices) are used to fetch the corresponding N X N data values from local matrices,
stored in global memory. Please note that the N X N data values fetched using one N X N
index-block, do not come, in general, from the same local matrices. To accumulate the local
contributions, an array (stored in shared memory) is used. If an index has value —1, no update
is performed. For the next sub-step, the indices pointing to the index blocks are increased.
Therefore, per step, the number of index blocks for each processed matrix block must be equal,
which requires padding with ‘—1” index blocks. The advantage of this approach is that loading
the indices and writing the updated values always result in an optimal throughput. Loading
the actual local-element values is in general not optimal.

4.5.5 Tetrahedralization and Rendering

The quality of the tetrahedral mesh is essential for efficiently simulating a deforming elas-
tic object represented by a polygonal mesh. We have experimented with tetrahedralizations
in which the surface mesh forms the outer boundary of the tetrahedral mesh. Since the tri-
angles of the surface mesh can have a high variety in size, the generated tetrahedralization
also contains tetrahedral elements with a high variation in size and configuration. This can
have a negative effect on the quality of the tetrahedralization. Therefore, we chose to create
a tetrahedral mesh, using equi-sized elements, which however, may result in a rather rough
approximation of the original surface mesh. We tackle this problem by coupling the input
polygonal mesh to the (deforming) tetrahedral mesh, as follows.

First, a regular 3D grid of N* voxels is created, in which each voxel containing a part of the
surface is marked as important; typical values for N are 32, 64 or 128. Next, a regular tetra-
hedralization of the grid is created using equi-sized tetrahedral elements, and each element
containing at least one important vertex of the grid, is stored. Further, the inner volume of
the object is tetrahedralized using the same equi-sized tetrahedral elements. Next, in order
to reduce the amount of elements, those elements belonging to the inner volume are merged
together into fewer larger ones. This reduces the total amount of elements and thus the total
computation time. Note however that this approach is most useful with models which have
large internal volumes, similar to the bunny in Figure 4.5. Finally, the original surface mesh
is coupled with the tetrahedral one similar to [124]: each vertex in the original surface mesh
is mapped to exactly one tetrahedron, and its barycentric coordinates in that tetrahedron are
stored along with the vertex coordinates.

When the new positions of the tetrahedra are computed, the surface mesh is also updated. To
compute new positions of the deformed surface mesh, for each vertex of the input mesh, the
positions of the four vertices of the corresponding tetrahedron are looked-up and interpolated
using the barycentric coordinates of the original vertex.
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Figure 4.3: Performance results with different numbers of elements. CG represents the performance of the CG
solver, Matrix — the performance for computing the local element matrices, Rotation — the performance of the
rotation extraction procedure, SpMV — the performance of the SpMV operation; Total represents the overall perfor-
mance. Steps/sec represents the number of simulation steps per second. The global-matrix update was performed
with an effective throughput of 50 GB/sec.

4.6 Results

All experiments have been performed on a machine equipped with an Intel Q6600 quad-core
processor and a GeForce GTX 570 with 1.2 Gb of memory. Figure 4.3 shows the performances
obtained for computing the local element matrices (Matrix), the rotation matrices (Rotation),
solving the resulting linear system (CG), performing a single SpMV (SpMV), and the total
performance (Total) as a function of the number of elements. Steps/sec is the corresponding
number of simulation steps performed per second. Similarly, Figure 4.4 shows the compu-
tation time per simulation time-step. For each model, we have used the following material
parameters: Young’s modulus of elasticity, E = 5 X 10°N/m?; Poisson’s ratio, u = 0.2; density,
p = 1000KG/m>. Furthermore, the time-step of the simulation At = 0.001 and the volume
of each initial element v, = 1.65 X 107m>. Each model used in this chapter is scaled such
that each dimension is at most 66 ¢m and is tetrahedralized as described in Section 4.5.5. With
these settings, the CG solver found a solution for each model in 5 to 18 iterations. In order
to obtain a generic performance picture, we have fixed the number of iterations to 18, which
resulted in the performances from Figure 4.3.

Within Figure 4.3 a number of interesting patterns can be seen. First, the performance for
computing the local element matrices reaches its maximum very soon. Since each matrix is
mapped to exactly one thread-block, a large amount of thread-blocks is created, resulting in
a ‘constant’ performance. Second, the performance figures for computing the rotation ma-
trices show a larger variation. Since 16 rotation matrices are processed by one thread-block,
a significantly smaller amount of thread-blocks is used. Finally, the performance of the CG
method seems to be low compared to the other operations. The CG method operates on
a global sparse-matrix and performs a large number of sparse-matrix vector multiplications
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Figure 4.4: Timing results with different numbers of elements, per time-step. CG represents the time of the CG
solver, Matrix — the time for computing the local element matrices, Rotation — the time of the rotation extraction
procedure; Total represents the total elapsed time per time-step.

(SpMVs) and vector-vector operations, for which the performances are mainly bound by the
memory throughput. However, the CG performances from Figure 4.3 agree with those from
[183], given the dimensions of the problem.

The measured, effective throughput for updating the global matrix was about 50 GB/sec, in all
cases with more than 5k elements. Since this operation transfers a large amount of data, the
memory bus is saturated very soon, resulting in a good throughput. However, since not all
transactions can be coalesced, the maximum throughput is not reached. This operation is very
similar to an SPMV with 1 X 1 blocks, but now for a matrix containing d times more elements,
with d the degree of internal nodes in the model. This observation shows that the measured
throughput is close to the expected one, according to the results in [183].

As expected, the total performance increases with the number of elements. This shows that
the computational resources are used efficiently for larger models. The number of elements,
for which the maximum performance is reached, depends on the actual GPU mapping of the
computations. For example, the CG solver does not reach its maximum performance for 100k
elements, while the computation of the local element matrices reaches its peak at 5k elements.
Due to this, one can expect better performances for the CG method when larger models are
used. Furthermore, for models having less than 30k elements, the total computation is domi-
nated by the time spent by the CG solver. For larger models, more time is spent on computing
the local matrices, see Figure 4.4.

The measured overall performance is based on the total time needed per simulation step, which
includes all operations performed, except the rendering of the model. Figure 4.3 also shows the
number of simulation steps performed per second, given the number of elements; these num-
bers are based on the total computation time. Accordingly, even for large models, interactive
frame rates can be reached. A rough comparison of the obtained performance and frame rate
with other state-of-the-art multigrid GPU implementations [49] shows that, even if in theory
the CG method converges slower than multigrid, comparable results can be obtained for simi-
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Figure 4.5: Material properties and collision handling. Left: flexible material (E = 5 x 10*). Right: stiffer material
(E = 5 x 10°). Simulation rate: 120 frames per second.

lar models. We assume that memory transactions in our method are more efficient, despite of
transferring more data. However, more research is required to get a full understanding of the
differences between both methods performed on modern GPUs, with respect to performance
figures. Finally, Figures 4.1 and 4.5 to 4.9 show example results from our simulations.

4.7 Conclusions

We have presented an efficient method for simulating elastically deformable models for graph-
ics applications, accelerated on modern GPUs using CUDA. Our method relies on a fast Conju-
gate Gradient solver and an efficient mapping of the SPMV operation on modern GPUs [183].
Since the topology of the underlying grid does not change during the simulation, data struc-
tures are reused for higher efficiency. To further improve the performance, we proposed a
scheme which allows to efficiently update the sparse matrix, during the simulation.

In future work we will investigate the performance of this method when multiple GPUs are
used. Furthermore, we will investigate the performance difference between traditional CG
methods and multigrid methods performed on modern GPUs. Also, we plan to enhance the
simulation to allow for plastic behavior as well as brittle and fracture of stiff materials.
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Figure 4.6: Bunny bouncing on the floor. Simulation rate: 120 frames per second.

Figure 4.7: Left: applying external forces on the wings. Right: after releasing the external forces. Simulation rate:
116 frames per second.
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Figure 4.8: Left: stretching and deforming a model using external forces. Right: deformation after releasing external
forces. Simulation rate: 118 frames per second.

Figure 4.9: Other simulation results. Simulation rate: 160 frames per second.
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Figure 5.1: A hyper-elastic Armadillo pulled through a set of (transparent) rotating cylinders at time-steps 5000, 7500,
10000 and 12500. The timing results of this experiment for various methods are shown in Figure 5.11.

imulating (elastically) deformable models that can collide with each other and with the
S environment remains a challenging task. The resulting contact problems can be elegantly
approached using Lagrange multipliers to represent the unknown magnitude of the response
forces. Typical methods construct and solve a Linear Complementarity Problem (LCP) to ob-
tain the response forces. This requires the inverse of the generalized mass matrix, which is in
general hard to obtain for deformable-body problems. In this chapter we tackle such contact
problems by directly solving the Mixed Linear Complementarity Problem (MLCP) and omitting
the construction of an LCP matrix. Since a convex quadratic program with linear constraints
is equivalent to an MLCP, we propose to use a Conjugate Residual (CR) solver as the back-
bone of our collision-response system. By dynamically updating the set of active constraints,
the MLCP with inequality constraints can be efficiently solved. We also propose a simple yet
efficient preconditioner that ensures faster convergence. Finally, our approach is faster than
existing methods (at the same accuracy), and it allows accurate treatment of friction.
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5.1 Introduction

Physically-based models are nowadays widely used in many computer graphics applications,
such as animated movies and video games. Typical animations consist of many (complex) ob-
jects that can interact with each other and the environment. The behavior of such objects
is based on their internal dynamics, modeled through some material simulation, e.g., rigid-
body, cloth or fluid simulation. However, the very motion of each object can also influence
the motion of other objects in the scene. Therefore, accurate treatment of collision events
dramatically improves the realism of the simulation, delivering rich and visually pleasing ani-
mations. In addition to translational and rotational motion, the motion of a deformable object
is also affected by shape changes (deformations). Since the deformation is generally unknown,
no exact collision time and location can be directly computed. Furthermore, the collision re-
sponse influences the dynamics of the objects and thus their motion, and ideally, it should also
account for accurate friction.

Typical approaches for handling contact problems reformulate them as velocity constraints
and use Lagrange multipliers to represent the unknown magnitudes of the contact forces. Then,
the resulting Mixed Linear Complementarity Problem (MLCP) has to be solved, which yields a
solution that agrees with both the collision response problem and the model dynamics. The
constrained problem is usually tackled by reformulating it as a Linear Complementarity Prob-
lem (LCP), which typically is solved using (Projected) Gauss-Seidel methods. The construction
of the LCP matrix requires the inverse of the generalized mass matrix, which can be directly
computed for rigid-body simulations. However, for deformable bodies, this inverse is not di-
rectly available and has to be approximated (e.g., see Otaduy et al. [138]). Therefore, one
often seeks an approximation or solves a system of coupled problems. Alternatively, directly
solving the original MLCP constitutes a viable approach for deformable models. Ramage and
Wathen [147] compared the performance of the Conjugate Residual (CR) method for solving
coupled indefinite problems, stemming from finite-element discretizations of the Stokes equa-
tions, to that of a two-level approach in which two nested Conjugate Gradient (CG) solvers
were used. Their results show that the CR method outperforms the coupled CG approach for
such equality-constrained problems. Inspired by their results, we shall investigate here how
the CR method can be extended for efficiently solving contact problems involving inequality
constraints.

For stable simulations of coupled rigid and deformable bodies, it is important that all collisions
are resolved completely at the end of each time-step. However, when a collision is resolved, the
resulting deformation may lead to new collisions or changes in contact forces elsewhere. This
often results in a state in which contacts do not agree with the actual geometry. If such errors
are not corrected, these contacts will eventually introduce energy to the system, resulting in
oscillations and instabilities. Additionally, the larger the deformation is, the more likely that
such mismatches appear. Such mismatches can occur even for rigid bodies. To minimize these
errors, one needs to solve non-linear contact problems.

In this chapter we present a method that focuses on solving the contact problem for deformable
bodies, without the need to compute the Delassus operator. Due to this, contacts can be ef-
ficiently linearized, which allows us to solve the non-linear contact problem, resulting in a
guaranteed collision-free state at convergence. The method is based on the CR method which
simultaneously provides estimates for both deformation and contact forces. By allowing con-
straints to change status (switch among active or inactive states), inequality (non-penetration)
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constraints can be handled directly. Furthermore, friction is modeled similarly, such as by
switching between static and kinetic friction constraints. By continuously updating the sliding
directions of the kinetic friction constraints, Coulomb’s friction model is approximated. Addi-
tionally, we propose a simple yet effective preconditioner that significantly reduces the num-
ber of iterations and computation time. The method allows for large deformations and contact
forces, stable-stacking of (almost) rigid objects, and an accurate approximation of Coulomb’s
friction cone, see Figures 5.1, 5.2 and 5.9. Finally, our approach is faster compared to other
methods, with the speedup typically increasing with the complexity of the simulation.

5.1.1 Previous and Related Work

A tremendous amount of work has been done addressing physical simulations for computer
animation, including rigid-body, cloth, deformable-object and fluid simulations. Here, we shall
only give a very brief overview of highly related methods. For background material on contact
mechanics, we refer to the work of Wriggers [193] and references therein.

Rigid Bodies  Although penalty methods for collision response [13, 121] are relatively fast
and easy to implement, the computed penalty forces have to compete with all other forces
acting on the simulated bodies. Therefore, the forces may fail to avoid inter-penetration.
Impulse-based methods [7] model the response of a collision event through the application
of contact impulses. These methods apply impulses on objects to resolve collisions, but can
trigger new ones. This problem can be solved by using shock propagation techniques [77].
Other approaches used in rigid-body simulations often model collision response as a con-
strained optimization problem [8, 58, 125, 148]. This class of methods also includes approaches
based on LCP formulations [43], typically used in rigid-body simulations [9], interactive ap-
plications [37, 180] and cloth simulations [30]. LCPs are frequently used in combination with
implicit time-integration schemes, such that a collision-free state is guaranteed for the next
time-step [167]. It is this last property that makes such approaches very appealing for solving
the contact problem for deformable models as well. Anitescu and Hart [5] develop fixed-point
iteration algorithms that solve convex sub-problems that are guaranteed, for small friction co-
efficients, to obtain the unique velocity solution of the non-convex friction LCP. Their method
converges at a linear rate. A non-smooth non-linear CG method is presented by Silcowitz-
Hansen et al. [160], which combines Projected Gauss-Seidel (PGS) with a Fletcher-Reeves CG
method. Bertails-Descoubes et al. [25] present a method for simulating contacts between small
rods or fibers. The method models exact Coulomb friction and uses a non-smooth Newton
solver, which relies on an easy construction of the Delassus operator. Xu et al. [196] present a
method for rigid bodies, which solves a Quadratic-Programming (QP) problem based on con-
tact constraints. A Singular-Value-Decomposition (SVD) solver is used to form the (singular)
Schur complement matrix, which is then used in combination with Cholesky decomposition
and back-substitution. Friction is modeled using friction anchors. Although a penalty-based
method, due to the implicit-integration scheme used, this approach can also be interpreted as
a method that solves constraints. Mazhar et al. [118] introduce the so-called Accelerated Pro-
jected Gradient Descent approach to accelerate the simulation of large systems of rigid bodies
interacting through normal and frictional contact. The method can easily be parallelized, re-
sulting in speedups of one to two orders of magnitude. Silcowitz-Hansen et al. [159] propose
a PGS method working on a subspace of the problem. At each iteration, the method first per-
forms an approximation using PGS, followed by a more accurate solve concerning a subset of
active constraints having non-clamped multipliers. A detailed overview of numerical methods
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for solving LCPs is given by Erleben [59]. Finally, an extensive overview of rigid-body sim-
ulations is given by Bender et al. [20]. Other related projected Krylov methods, used in rigid
many-body / granular-material simulations, are found in [89, 149].

Deformable models Early work on collision handling for deformable models includes the
method of Baraff and Witkin [10], which models the collision response through constraints
yielding contact forces. By solving a QP problem, an optimal solution is obtained. Although
not directly used for deformable objects, Constraint Anticipation [9] is a technique that trans-
forms an MLCP into an LCP. After solving the LCP for the unknown Lagrange multipliers,
collision response impulses are applied on the colliding models. When applied to rigid bodies,
this technique is very efficient. Otaduy et al. [138] extend this approach for deformable mod-
els as Iterative Constraint Anticipation (ICA). ICA computes the multipliers and the collision
response using two nested (Projected) Gauss-Seidel solvers that approximate both the multi-
pliers and velocities. Raghupathi and Faure [146] use an Active Set approach for solving the
contact response problem: Given a set of active and inactive constraints, a QP problem is solved
using the CG method. On convergence, constraints can change state between active and in-
active. The Staggered Projections (SP) method [101] computes an unconstrained velocity that
is corrected using two coupled projection steps (each solved using a QP solver). This iterative
process continues until the residual is minimized. The method of Allard et al. [2] constructs
volume-based constraints that ensure a zero intersection volume of two colliding objects. The
resulting MLCP is solved using the Gauss-Seidel-like method of Duriez et al. [50]. The latter
approximates exact Coulomb friction and explicitly constructs the Delassus operator (an LCP
matrix), for which some approximations were made. Daviet et al. [47] present a scalable and
robust solver for capturing Coulomb friction in large assemblies of tightly packed fibers, such
as hair. The method can handle a few thousand fibers subject to tens of thousands frictional
contacts at a reasonable computational cost. Li et al. [108] present an efficient Gradient Projec-
tion method for computing contact responses by decoupling constraints. Unfortunately, their
method cannot handle coupled frictional constraints efficiently. Works on collision detection
[178], coupling of rigid and deformable bodies [157], deformable bodies [66, 94, 142, 164], and
penalty forces [174] are all closely related to the contact problem for deformable models.

Comparison to our method We build on methods that involve velocity-level constraints
and compute Lagrange multipliers in combination with implicit time integration. As seen ear-
lier, many methods found in rigid-body applications require the construction of an LCP, Schur
complement matrix, or Delassus operator, which relies on the availability of the inverted gen-
eralized mass matrix. For rigid-body problems, this inverse can be obtained relatively easily,
whereas for Finite Element Method (FEM)-based deformable-body problems, this is generally
not immediately possible. Therefore, many of these methods are not efficient for simulat-
ing deformable bodies with a large number of degrees of freedom, see Section 5.6.2. Indeed,
for deformable-body problems, often coupled solvers are used [101, 138] and/or PGS methods
are used [2, 50]. Otaduy et al. [138] iteratively approximate interleaved normal and friction
responses, but their method does not satisfy the Maximum Dissipation Principle (MDP). In
Kaufman et al. [101] this principle is guaranteed. This method iteratively solves two coupled
QP problems and has been demonstrated for rigid and reduced-order flexible multibody sys-
tems. The method of Duriez et al. [50] models exact Coulomb friction (satisfying the MDP)
and solves the problem using a PGS approach.
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All methods just mentioned first solve an unconstrained problem, which is corrected later,
or first compute collision impulses, which are applied as external forces to objects. Our ap-
proach differs from all these works in that no coupled solvers are used, neither is an LCP,
Delassus, or Schur complement matrix constructed or used. We approximate the Coulomb
friction model using an additional kinetic friction force, aligned with the sliding velocity, thus
satisfying the MDP. The corresponding QP problem (containing the generalized mass matrix
of the simulation and its constraints) is solved using the CR method. By changing the state of
the constraints, projections are performed that directly apply to the global problem such that
friction and normal responses affect the internal (elastic) energy of the objects. In addition,
constraints can be added or re-linearized at convergence to guarantee that a global, collision-
free state is obtained, satisfying all constraints. To accelerate the convergence of the method,
we derive a preconditioner that significantly reduces the amount of iterations. Finally, in this
work, we create constraints per contact point, although we could also use constraints based
on a volumetric description of a collision, similar to Allard et al. [2].

5.2 Background
5.2.1 Linear and Hyper-Elasticity

The deformation of a body can be described by a mapping ¢ from material coordinates X

to world coordinates x (i.e., x = ¢(X)). The stress P at a point X depends solely on the de-
formation gradient F = g—?z and is obtained through some energy density function ¥(F) via
P(F) = %—‘g Since the stress is invariant under rotations, P(UF) = UP(F) holds for any rotation
U. Furthermore, if the material is isotropic, P(FVT) = P(F)V” holds for any rotation V. By

diagonalizing F using SVD, F becomes UFV7, so the stress can be obtained through
P(F) = UP(F)V', (5.1)

with F a diagonal matrix containing the singular values of the deformation gradient. Given the
(isotropic) constitutional model used in ¥, a wide range of materials can be simulated. If ¥ is a
quadratic function, a linear elastic model is obtained, for which the unrotated force gradient is
constant; this coincides with co-rotational FEM [124]. Once the stress P is obtained, the nodal
force f; is obtained by

f; = —P(F)b;, (5.2)
with b; the area-weighted normals of the faces connected to node i for a particular volume
and stress P, see [95]. By assembling the nodal forces for all volumes, net force f is obtained.
To obtain the force gradient, % = > aa—l,fl% the gradients of the SVD in Equation (5.1)
with respect to F are required, see [161] for its derivation. When dealing with hyper-elastic
materials, the computed force responses can become very large (due to the non-linear nature of
the energy model) when the compression becomes large. To robustly simulate such materials,
we use the method of Stomakhin et al. [168], which linearly extrapolates the energy density
function after a certain amount of compression is reached, see Appendix D.4 for additional
details.

5.2.2 Dynamics and Numerical Integration
Given Newton’s second law of motion Ma = f, a first-order Taylor expansion of the net force
f is performed, yielding

of 0x of ov

of of
Ma—f"l‘At&E‘FAtEE _f+At6_XV+At$a. (53)
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Figure 5.2: Example simulations by our method: (a) difficult case with many deformable objects in a moving wedge;
(b) large deformations and elastic forces appear when the shown elastic strings are tangled; by releasing external
forces, the strings are untangled; (c) stable stacking of rigid objects, illustrating accurate friction treatment.

Using a first-order forward difference approximation of the acceleration a, the following semi-
implicit system is obtained

(M + AtCy + APPK) vI*! = (M + AtCy) V' + Atf, (5.4)
with M the mass matrix of the system, v the velocity, damping matrix C; = —%, and stiffness
matrix K = —%, see [11]. Positions x are updated using

Xt = x4 Ayt (5.5)

We discretize Equation (5.4) in space using FEM. Accordingly, for each element (tetrahedron),
a per-element equivalent of Equation (5.4) is generated, given mapping x = ¢(X). By assem-
bling all these local instances into a global one, the global version of Equation (5.4) is obtained,
with now M, C; and K the global mass-, damping-, and stiffness matrix, and x, v, f now vec-
tors representing positions, velocities and all internal (Equation (5.2)) and external forces (e.g.,
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Figure 5.3: Vertex-face contact pair. Vertex x’,, (green) at iteration i penetrates a face at i + 1 (red). x j is the collision
point on the face, wq, wp,, w, its barycentric weights, n; the contact normal and t; ; the tangent vectors; dj ,,
represents the normal distance at the beginning of the time-step and dy, the tangential distance.

gravitational forces) of all nodes in the discretized model. This system is stored using a large
yet sparse matrix in the form Avi*! = b, with A € R3No*3No the generalized mass matrix
(M + AtC4 + At?K), b the right-hand side, and N,, the total number of vertices. Such systems
are typically solved using the CG method for the unknown velocities vi*!. Given the new
velocities, the positions are updated using Equation (5.5).

5.2.3 Non-Penetration Constraints

Two deformable bodies have collided if the signed distance between any two points on their
surfaces I7 and I5 is negative. Such collision events are detected by considering vertex-face
and edge-edge contact pairs. For the vertex-face case, let x}, € I} be a (discrete) vertex on the
surface of the first object, which penetrates I} in the next time-step, resulting in a collision
point x; on a triangular face of I;, see Figure 5.3. The (signed) distance d , between X]i- and
x!, is computed using . _ o

Cr(x') = (x5, —x}) -y = d s (5.6)

with n;'C the contact normal, k the constraint identifier, and x a vector containing all vertex
positions at time-step i. To avoid penetration, C¢(x’) > 0 must hold for any x; and x,, pair.
Clearly, this should also hold after the semi-implicit update (i.e., Cx(x* + Atvi™) > 0). Since
Equation (5.4) solves for vi*!, Equation (5.6) is transformed into a velocity constraint using a
first-order approximation-that is,

i+1
(At?a_if Ati%‘,) : (:{+1) > —dj n = ks (5.7)
m
with vi*! and vi!! the new vertex velocities, and ck_, the constraint constant. After collecting
all resulting non-penetration constraints and assembling all instances of Equation (5.7), one
obtains
V> e, (5.8)

with J € RNe*3No the Jacobian matrix containing the derivatives of all positional constraints,
N, the number of non-penetration constraints, N, the number of vertices, v a vector represent-
ing all vertex velocities, and c the right-hand side of Equation (5.7), for all constraints. Since
Xj = WgXq+WpXp +WeXe and we consider vertex-face and edge-edge pairs, J contains per con-

tact point a sparse row-vector ji € RIX3No e.g.jk = (—waAtnz, —watni, —wCAtnz, Atni)
for a vertex-face constraint Cy, with ny the contact normal, see Figure 5.3. At this point we

consider ni to be constant within one time-step. In Section 5.3.3, an extension is proposed
that takes the change of the constraints into account. Furthermore, self-collisions in which
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I = I, and degenerate collisions (vertex-vertex/vertex-edge) are treated similarly. However,
the latter will produce duplicate contacts that need special care, see Section 5.3.4. Similarly,
constraints can be derived for contact involving rigid bodies, see Appendix A.3.1.

5.2.4 Constrained Velocity as a Complementarity Problem

We model collision response using Lagrange multipliers so that normal contact forces are given
by f, = JT A, with A the vector of Lagrange multipliers representing the unknown magnitudes
of all contact forces. According to Signorini’s contact model (see also [50]), a complementarity
condition is further imposed-to prevent penetration, the contact forces should push the bodies
apart, and hence A > 0. Furthermore, if the non-penetration constraint is not violated (Ci (x) >
0 for some constraint), its corresponding multiplier should be A, = 0. Hence, Jv — ¢,)7A =
(vTJT — DA = vTf, — cI A = 0, which gives the complementarity condition.

Contact forces are simply included in the motion equations of the model (see Section 5.2.2),

resulting in
A JT v b 1
os(J J )(A)_(CH)L(A)ZO, 59)

(see [43]), which is an MLCP for which the Karush-Kuhn-Tucker (KKT) optimality conditions
[106] apply.

5.3 Collision Response through the Conjugate Residual
Method

MLCPs can be solved by transforming them into LCPs [9], provided that matrix A can be easily
inverted. They can also be solved by any algorithm for strictly convex QP problems with linear
constraints. Given the MLCP from Equation (5.9), the corresponding QP problem is

min f(v) = %VTAV —v"b (5.10)

subject to Jv > cj,.

A sufficient condition to guarantee strict convexity is for matrix A to be positive definite. In
this case, f(v) is a strictly convex function, and if the constraints are linear, it has a unique
global minimizer [27]. Since according to Equation (5.4), A is given by the linear combination
of the (positive-definite) mass and (positive semi-definite) stiffness and damping matrices, A is
positive definite. If the material simulation does not produce a positive semi-definite matrix,
this property must be enforced by, for example, by removing the negative eigenvalues from
the element stiffness matrices.

The quadratic function in Equation (5.10), but subject to Jv = c,, is equivalent to

()05 ) -

N— e ——
B y d

or By = d in short. Since matrix B € RGNo+*Ne)XBNo+Ne) jg not positive-definite, the system

in Equation (5.11) cannot be solved by the CG method. The CR method [113] is a Krylov
subspace method, similar to the (more popular) CG method, and minimizes ||By —d||? and thus
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solves Equation (5.11). In the following sections, we describe how the CR method is used to
solve the contact problem, including friction. Additionally, we describe how constraints are re-
linearized in order to obtain a collision-free state. For details on deriving and preconditioning
the CR method we refer to Appendices B.2.3 and B.2.4.

5.3.1 Conjugate Residual Method with Non-Penetration Constraints

Luenberger [114] proposed a method for solving constrained nonlinear programming prob-
lems by treating inequality constraints as equality ones that can regularly change states. The
method uses a descent step to improve the current approximation. When the problem is a QP
with linear constraints, the CR method can be used to perform these descent steps. In the
following, we describe how the method in [114] is applied in case of contact and friction and
how it is used in combination with the CR method in Algorithm 4.

For now, let j denote the loop index inside the CR method. Furthermore, recall that each
constraint Cy is represented by a sparse row-vector ji in Jacobian J, its corresponding La-
grange multiplier A, and some constant c ,, see Section 5.2.3. The complementarity con-
dition in Equation (5.9) states that if A, > 0 is true, then jxv = ck,, also holds for some
constraint Cy, with v the global velocity. Conversely, if Ay = 0 is true, then jrv > ¢ , and

(jkv — Ck, ,,)T Ak = 0 also hold. Therefore, constraint C does not contribute to the computa-
tion of v and can be deactivated in Line 13 or Line 23. Due to this mechanism, summarized in
Algorithms 5 and 6, the CR method can solve the problem in Equation (5.10). In other words,
each constraint is active or inactive throughout the solver iterations, and its state is regularly
updated. The method converges when ||rj.|| < € and ||Urj41]le < €2, With €; and €, a relative
and absolute tolerance, respectively, and U a matrix that selects the entries from r that involve
active constraints. This ensures a maximum constraint error less than €,. The second conver-
gence criterion is used to detect local minima, see Section 5.4.3. Furthermore, when the CR
method converges, new constraints can be added and inactive constraints are removed. How-
ever, the main difference with active set methods is that constraints’ state changes are allowed
before the solver converges. Therefore, the problem is to decide when to activate or deactivate
constraints prior to convergence. Note that when a constraint is inactive, multiplications Bp;
and By, are performed such that the corresponding entries in J are neglected. This also ap-
plies for the corresponding terms of the preconditioner C, see Section 5.3.4 for details about
preconditioning. Furthermore, when the residual is recomputed for inactive constraints, the
values in d corresponding to inactive constraints are also neglected.

Constraint activation  The activation of a constraint Cy depends on ¢k p, jx and v at solver it-
eration j. Distance d , is computed using Equation (5.6) and stored in ¢k , when the constraint
is added to the system (when a collision is detected), or when the constraint is re-linearized.
At the same moment, ji is computed and included in J, see Section 5.5 for more details. To de-
termine when a constraint should be activated (assuming it is inactive), the penetration depth
is evaluated regularly. If

JkV—cCn <0 (5.12)

holds, the constraint is activated and the corresponding Lagrange multiplier will be computed,
which would eventually resolve the collision, see Line 8 of Algorithm 5.

Constraint deactivation Since our solver allows for activation and deactivation of con-
straints at any time, a criterion is needed to decide when to deactivate them. It may seem
logical to deactivate a constraint Cy if jxv — ¢k, = 0. However, since v does not reflect the
final velocity, this criterion cannot solely be used. When both jiv and Ay are used instead, the
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Algorithm 4: Pseudo-code of our collision handling system.

1 Discretize computational domain;
2 Initialize BVH and additional data structures;
3 while Simulating do

4
5
6
7
8

9

10
11
12
13

14
15

16
17

18
19
20
21

22
23
24
25
26
27
28
29
30

31

32

Update matrix A using FEM, see Equation (5.4);
Find all potential collision candidates, Section 5.5.1;
Linearize and check all active constraints;
ro = d - Byo; po = C'rg, j = 0;
while Not converged do
_ rfCT'BCr;
- p}.-BC’]Bpj >
Yj+1 =Yj +apj;
Tj1 =T — aBpj;
if ¢ > 0 then
L EvaluateConstraints(||rj.1 ||, j, €1, €2);
if No constraints changed then
_ 1JuC'BCTr
b= —reme,
pj+1 = C7rj — fpj;
| Bpj., = BC'rji - fBp;;
else
rjy =d—By;
Pj+1 = C_lrj+1§
| Bpj,, = BC'rj.1;

e

£ (llrjsall < e A llUrjsllo < €2) V [IBCT'rjys]| < € then
EvaluateConstraints(||rj.1[[, 0, €1, €2);
if No constraint states have changed then
Check all candidates for new collisions, Section 5.5.2;
if No new constraints are added then
Re-linearize constraints Section 5.3.3 and Equation (5.21);
if No constraints are updated then

Advance simulation;
break;

Recompute residual, see Lines 19 to 21;

| J=it+L
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5.3 Collision Response through the Conjugate Residual Method

Algorithm 5: Pseudo-code for constraint evaluations.

Function EvaluateConstraints(r, i, €1, €3):

: logz("/ﬁl)

interval = max(1, | =5—"]);

if i mod interval== 0V i == 0 then

foreach contact k do

if Non-penetration constraint active then
if jxv —ck.n = 0 and A < 0 then

L L Deactivate constraint, A = 0;

else if jxv — ¢, < 0 then
L Activate constraint, set friction to kinetic friction;
if Non-penetration constraint active then
if Friction constraint in static friction mode then
if ||ykll > pAx and (x.;v — c./)Tyx > 0 then
Switch to kinetic friction;

Sk =7 A, = lyl/p ye =0

Ise if (i v — ck,,)TSk < 0 then
Switch to static friction;
| V=V V=0
| UpdateKineticFriction();
if Z7'S4[Adk, Ayl + Ay 1" > €, then
L Use updated constraint k and report change to solver;

()

else
L Discard changes for constraint k;

| d=[(b-Jy")", ¢, c]1"/*Update RHS"/;

criterion can be formulated as follows: if
jkV—ckn=0and A <0 (5.13)

hold, then there is no collision and the constraint is attracting the objects—that is, it tries to
enforce the equality jxv = ck ,. Therefore, the constraint is deactivated, see Line 6 of Algo-
rithm 5. This is thus the only state that allows deactivation of a non-penetration constraint. For
all other combinations, the constraint is kept active since there is still a collision (jxv—ck, , < 0)
or objects are repelled (1x > 0).

Unlike [114], our CR-based solver for contact problems updates only the active set at dynamic
intervals determined by the residual norm, see Line 2 of Algorithm 5. When the residual
is small, constraints are evaluated more frequently. Conversely, for a larger residual norm,
constraints are evaluated less frequently, which reduces the number of residual evaluations
(each requiring a multiplication By). This makes our method more efficient than the CR solver
in [114]. Additionally, our method supports a left preconditioner (matrix C™! in Algorithm 4).
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5.3.2 Incorporating Friction Constraints

Friction is also treated as a constraint on the velocity. According to Coulomb’s friction model,
friction can be described by a cone that bounds the friction force ff in all directions, given the
magnitude of the normal force f,, and a friction coefficient y, see Figure 5.4. When ||f]| <
plIfnl, the friction force is not bounded and the sliding velocity is zero. When [|f¢|| = pllf,|,
the friction force is bounded and is not large enough to keep the sliding velocity at zero. Equa-
tion (5.9) can therefore be extended with additional complementarity conditions, resulting in
the following problem:

A JTJr o v b 1
J o o o A Cn A

0< 7, 0 0 -t i 1 v >0 (5.14)
0 g -e O p 0 p

with JTy = fr the applied friction force, J; € RNpNeX3No 3 matrix containing tangent vectors
for all friction constraints, y a vector of unknown multipliers representing the magnitude of
these vectors, and c; containing all tangential distances for all constraints. Per constraint,
the tangential distances ci ; (see Figure 5.3) are computed similar to Equation (5.6), albeit the
normal vector is replaced by a tangent one. Please note that ci ; represents the distance from
configuration x’, to the first moment of impact at x;. For persistent contacts, cx, = 0 since
x!, is already in contact. Matrix J; usually contains, per contact point, a number N, of scaled
instances of tangent vectors, each corresponding to one facet of the discretized friction cone.
Furthermore, e and p are matrices used to couple all multipliers in A,y, and f. The latter
representing the unknown sliding velocities. If f is positive for some friction constraint Cy,
a positive sliding velocity exists and the friction force is bounded, resulting in dissipation of
energy. If Sy is zero, the friction force is not bounded and no sliding occurs. Unfortunately,
Equation (5.14) is not symmetric and non-convex, and is therefore not equivalent to a QP
problem. In the next section, a modification is proposed that restores this relation.

Modified Friction Model

Given the model described in Equation (5.14), we now proceed by adapting this model. Instead
of using a discretized friction cone, a continuous and bounded kinetic friction force is modeled.
This approach is summarized in Algorithms 5 and 6, and discussed here. Per constraint Cy, the
friction force is decomposed using only two perpendicular tangent vectors ti ; and ty 2, which
appear in ji , € R®3Ne ag part of J,, see Figure 5.4. Due to this, y contains per constraint Cy,
two Lagrange multipliers (yx 1, YkT, , = Yk, which can be both positive and negative. For clarity
of exposure, we assume for now that all friction constraints in the system are either in the
static or kinetic state. To also keep the presentation brief, we may not make a clear distinction
between model and method.

Static friction  For static friction, the sliding velocity is zero (f = 0), so Equation (5.14) can
be written as

A )T gt v b 1
o<[J o0 o Al=lc [L] 2 |20, (5.15)
J; 0 0 y Ct 4

with |y| the componentwise absolute values of y, and the additional condition that 0 < ey <
pA, which for a constraint Cx means that 0 < ||yk|| < pAg. The second inequality should hold
for the static case, because the friction force is not bounded by the friction cone, and the solver
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teo <
’ S Sk
Figure 5.4: A representation of the friction cone in which sliding velocity jx ;v — ¢k is misaligned by angle 6 (blue

segment) with the friction vector & ;.. To address this, we compute the new friction direction g’k thatis more aligned
with the sliding velocity, see Algorithm 6. If the magnitude of the sliding velocity is below the solver tolerance (red

area), no update of &, is performed.

computes a friction force that satisfies ji ;v = cx ;. Conversely, if both

lyll > pAx and Gig,rv = cx.0) yi > 0 (5.16)

hold, the applied friction force is too large and acts in the direction of the sliding velocity; thus,
the conditions for static friction are violated and the constraint is switched to kinetic friction,
see Line 12 of Algorithm 5.

Kinetic friction For kinetic friction, the sliding velocity is positive (8 > 0), which makes
Equation (5.14) non-symmetric. Such a system can be solved as described in [20]. Alterna-
tively, this system can be symmetrized by removing slack vector B from the equation. This
has the advantage that solutions always exist and can be found by Lemke’s algorithm [167].
Unfortunately, dropping B results in a violation of the MDP, as B selects a discrete vector in
J: that ensures this principle. In our method, the MDP is enforced differently.

Our approach for handling kinetic friction could be interpreted as a Bounded Linear Comple-
mentarity Problem (BLCP) [99] reformulation of Equation (5.14), where the alignment of the
discretized friction cone depends on the state of the system. The relation in the last row of
Equation (5.14) is enforced separately. This means that the kinetic friction force will never be
over-estimated, as it could happen in the BLCP model.

For kinetic friction, § > 0, thus gA = ey, which for a particular constraint C; means that
pAk = ||yk|l. The sliding velocity is given by jk ;v — ¢k = e’ B > 0. The basic idea is now to
estimate both the magnitude and direction of ;.

Let y, = (uA 0k.1 ,u/l;cék,z)T be such an estimate, with A; an approximation of A4, and Sk =

Ok.,1tk,1 + Ok 2tk,2 @ unit vector, representing the direction of the kinetic friction force in the
tangent plane, e.g., at x;, see Figure 5.4. Next, we eliminate from Equation (5.14) all rows and
columns corresponding to B and move J7y’ to the right-hand side so that our approximation
can be expressed in matrix form as

os(? {)T)(X)—(b_gfy/)L(;)zo, (5.17)
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supplemented per constraint by the condition (j v — c, t)Tgk > 0. This condition is violated
when the sliding velocity changes direction due to a too large friction force, i.e., when

(kv = k) 6k S 0. (5.18)

By then, switching the constraint to static friction, the solver will estimate ¥y, which eventually
satisfies ji ;v — ck.; = 0, see Line 15 of Algorithm 5.

Kinetic friction update  Earlier, a correct approximation of y; was assumed to be available;
here, we show how this vector is updated such that the friction force and the sliding velocity
are aligned, and that the magnitude of the friction force is bounded. Given the preceding
conditions, a violation occurs if

’ ’ 7 T
Ak #= Nyl = 1 (pA38k,00 pALSK2)" I (5.19)

If this happens, Simple Moving Average (SMA) Ak , is updated by adding the current A to
its history of n values (n = 2 in our implementation; see Line 4 of Algorithm 6). Next, A

is set to the SMA of Ay , at Line 5. To impose the MDP, the kinetic friction direction gk
and the sliding velocity have to be kept aligned. When the angle 0 (see Figure 5.4) between
8 and the current sliding velocity is larger than a given threshold (¢y = 1.2 degrees in our
implementation), the difference Ad; between both vectors is computed (Line 7). Next, dx
is updated using 8y + @gASi and then normalized, with ay a small step size (0.01 in our
implementation; see Line 8 of Algorithm 6). Thus, & is gradually updated to realign it with
the current sliding velocity. Finally, y; is approximated, see Line 9 of Algorithm 6. Using this
strategy, eventually all kinetic friction vectors approach their final configuration and satisfying
the conditions specified in Equation (5.17). By using this strategy, a stabilization mechanism is
introduced which suppresses undesired oscillations while solving the contact problem. Finally,
in a real simulation the system contains both static and kinetic friction constraints, so the
problem can be described in matrix form as

A JT g7 % b-JIy’ 1
0<[J o0 o A |- Cn 1|l A |>0, (5.20)
J; 0 0 y Ct y

where, for static constraints, entries in p’ are set to zero, whereas for kinetic constraints, all
entries in y, ¢, and those of matrix B corresponding to J,, J7 are similarly set to zero.

5.3.3 The Non-Linear Contact Problem

The problem solved in Equation (5.20) assumes that J and J; are constant during the time-
step, which is generally not true. Hence, C(x'*!) 1L A may not hold at the end of the time-
step. To minimize such errors, the complementarity conditions must also hold after updating
the geometry. To solve this non-linear problem, C(x) is re-linearized using an interpolated
approximation of x based on its previous and current approximations, followed by a solve of
Equation (5.20). Instead of interpolating C(x) globally, one can re-linearize each individual
Cr(x), ie.,

Ci (1) = WO (i) + (1 = W)CL(x0), (521)

with 0 < w < 1 a weight such that the change in the contact normal is less than, say, 15 de-
grees, and C Ilc indicates the last, C IIC“ the current, and C Il:l/ the new interpolated configuration
of the constraining geometry. The re-linearization of the constraints results in an updated J,
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Algorithm 6: Pseudo-code for kinetic friction update.

Function UpdateKineticFriction():

if Constraint k in kinetic friction mode then

if [[y/|l # pAx then
Compute Simple Moving Average A 4;
/12 = Ak,a;

if 0 < Ez(jk,tv — ck.r) < cos(eg) /*If angle 8 > €/ then
A8k = (jk.tv — Ck.t) — 8k /*Compute difference/;

L 8k = 8k + agASy /*Decreases 0*/;

Ly = ‘u/l;}k /*Update friction force™/;

J: and ¢ (Line 27 of Algorithm 4). Then, the method recomputes the preconditioner and the
residual vector, and continues until it converges again for the linearized problem. This pro-
cedure continues until, for each active constraint, 0 < Ci(x) < €; holds. When w = 0, this
procedure is exactly Newton’s method in which the constraints are re-linearized followed by
a solve of the updated Equation (5.20), see Section 6.7.2 for more details. Since Line 25 of Al-
gorithm 4 updates the set of potential collisions, a collision-free state is eventually obtained.
Additionally, when a contact point slides off a face or edge, the corresponding constraint must
be removed from the system. The main advantage of Algorithm 4 is that updating J, J; and ¢
does not require an update of the LCP matrix or Delassus operator. This allows us to efficiently
solve the non-linear contact problem for large systems.

5.3.4 Preconditioning

In this section, we derive a preconditioner that is easy to compute, yet it significantly reduces
the amount of iterations compared to a simple diagonal preconditioner. A common approach
for improving the convergence rate of Krylov-subspace methods is to use a preconditioner
matrix C™1. Many methods exist for approximating preconditioner matrices, such as LU and
Cholesky factorizations [75]. Unfortunately, these methods assume that the matrix is positive
definite, and therefore these preconditioners are not useful for our indefinite problem from
Equation (5.20).

Algorithm 4 shows the pseudo-code of our preconditioned CR solver with inequality con-
straints. Matrix B in the solver represents the matrix from Equation (5.20) and C™! the pre-
conditioner matrix such that C™! ~ B™!. The blockwise inverse of B is

-1 11 Tq-11 A-1 (Q-1] A-1NT
p o [ A CASIAT AT -
with LT = ( JT J] ) € R3Ne*3Ne the combined constraint matrix and S = LA™'LT. Next, we
approximate matrices A and S by Ay = diag(A) and S; = diag(ZLA;lLT), respectively, with
diag(-) extracting the diagonal part of its matrix argument and Z a diagonal scaling matrix, see
the following. Thus, the computations of A;l and S;l become trivial. Additionally, S;lLA;1 is
easy to evaluate and yields the same sparsity structure as that of L. Based on this, we construct
the following preconditioners:

Full: C™! is obtained from Equation (5.22) by replacing A and S by Ay and Sy, respectively;
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(A} 0
Diag: C™! = ( (‘)1 5 )
When the preconditioner is applied, only those parts corresponding to active non-penetration
and static friction constraints are considered. To construct the Full preconditioner, we first
compute the quantities S;l, S;lLAgl, A;lLT for each constraint and use them when evaluating
the blocks of the preconditioner, see Equation (5.22). Furthermore, when constraints are added,
removed, or re-linearized, these precomputed quantities are also updated.

If a positive-definite preconditioner is used, like our Diag preconditioner, then the norm of
the preconditioned residual will decrease monotonically when the states of the constraints are
not updated. As we will discuss in Section 5.4.2, updating constraint states does not always
result in a decrease of ||r|| (see Algorithm 4), but the approximation will always be closer to
the new optimum. When an indefinite preconditioner is used, the evolution of ||r|| is more
chaotic. More importantly, a can also be negative, which indicates that the current optimum
for the preconditioned problem lies in the opposite direction of p. Such an update does improve
the preconditioned problem (||r” C~'r|)), although generally not the unpreconditioned problem
(lIrTr])). Since the constraint updates are based on the unpreconditioned values x and A, an
update is only performed if a step towards the unpreconditioned optimum is taken, i.e., when
a > 0.

Preconditioner Scaling

The Full preconditioner approximated by Equation (5.22) significantly improves the conver-
gence rate of the method. Unfortunately, this preconditioner will have large deviations in the
upper-left block when B becomes singular or ill conditioned due to (nearly) duplicate con-
straints in L. When L is full rank, both inverse and pseudo-inverse of B are equal. By adding
duplicate rows to L, B and so S become singular. In our approximation, S; does not become sin-
gular. Computing then the approximated block inverse for our preconditioner using Sy yields
a change in the upper-left block of the preconditioner compared to the non-singular case. If
this error becomes too large, the CR method converges significantly slower. In contrast, the
pseudo-inverse of B does not introduce such a change, see Appendix A for more details on this
behavior.

To keep the upper-left block invariant for duplicates in L, it is sufficient to see that duplicate
rows and columns can be added together. As a result, the diagonal values in S; would have
been scaled up by the number of duplicates for their corresponding constraint. Since we do not
add duplicates together, the same scaling must be introduced to S using Z, which contains,
per constraint in L, the number of similar or duplicate instances. When computing the upper-
left block, duplicate constraints are added implicitly through the multiplication LTS;L. Since
this multiplication also involves S;l and thus Z™!, the difference introduced by the duplicates
is compensated by Z 1.

Similar or identical constraints occur, for example, when an edge intersects other edges close
to one of their shared vertices. The barycentric coordinate for the shared vertex is relatively
large for all constraints. The other involved vertices have a small contribution, which makes
the constraints almost identical to each other. For constraints involving deformable bodies, it
is sufficient to compute, for each pair of constraints a and b, a weight based on the differences
between their barycentric coordinates, i.e., (1—|wq,;—wp_;|), with i a vertex id. The similarity of
a pair is the product of these factors for each vertex that a and b have in common. Eventually,
the total scaling factor for one constraint is the sum of all these products. For contacts between

99

Collision response



Collision response

5.3 Collision Response through the Conjugate Residual Method

rigid bodies (Figure 5.2c), many constraints can act on the same degrees of freedom of the
rigid objects. Here the amount of duplicates, and thus the error in the preconditioner, can be
potentially large. In this case, it is sufficient to scale all constraints working on the same two
bodies by the total number of constraints between those bodies. This is in some way similar to
the method of Tonge et al. [180]. Appendix A provides more details on computing this scaling
matrix.

5.3.5 Optimizations

The convergence rate of the method described in Algorithm 4 is improved by allowing con-
straints to update their status at dynamic intervals. In other words, the closer the method is
to convergence, the smaller the intervals are between successive constraint evaluations, see
Line 2 of Algorithm 5. Eventually, constraints are evaluated every iteration when the residual
is small. If we always allow constraints to update their status every iteration, in the worst
case, the solver would need to recompute the residual vector as in Line 19 every iteration,
instead of using the recurrence from Line 15. The performance would then be comparable to
that of a Gradient Descent method, which can converge slowly due to zigzagging. Conversely,
when constraints are only allowed to update their status at convergence, one has an Active Set
method. In this case, the number of iterations between successive constraint evaluations can
be relatively large. Due to this, the solver can enter a loop in which constraints continuously
change their status. This constraint cycling drastically affects solver convergence and should
be avoided.

By evaluating constraints at dynamic intervals, the solver responds fast enough to situations
in which constraints should change states, although also slow enough for the solver to exploit
the conjugacy of the residual vectors. A positive side effect of this strategy is that the number
of residual re-evaluations (see Line 19) is significantly reduced. We have run a large number of
experiments while tuning the relation between the computed interval and the residual norm.
We have found that this strategy works very well for efficiently solving contact-response prob-
lems. This approach gave good results in all test-cases, but are not optimal for all cases.

Within our method, the possibility still exists that constraints change their status a large num-
ber of times, decreasing the convergence rate. To prevent this, one approach is to keep (at
some point) constraints in a fixed state, as mentioned in Raghupathi and Faure [146]. Unfor-
tunately this results in a violation of the conditions specified in Sections 5.3.1 and 5.3.2, which
could introduce additional energy to the system. However, even in such cases, the current
approximation is able to move toward the optimum, meaning that the method is still able to
converge, see [114].

When a constraint is about to change (see Line 19 of Algorithm 5), the change is postponed
if the change in distance is less than €,. In this case, the effect of performing the update is
negligible. This strategy also eliminates undesired oscillations of constraint states (constraint
cycling) that have no effect on the final result. This usually occurs when the solution for a
particular constraint is located close to a discontinuity in the derivatives, i.e., when a vertex is
about to slide or when two entities are barely touching.

Each time constraints change states, vectors r, p and Bp must be recomputed to restore the
conjugacy of the residual vector. Since the computation of the residual requires a full multi-
plication with matrix B, this is not very efficient. However, since each residual vector can be
decomposed as r = ry, + r, with r, = b — Av the unconstrained residual and r. the remaining
constraint residual, a multiplication with matrix A can therefore be completely omitted since
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r, is not affected by a state change. Indeed, only r. needs to be recomputed, which significantly
improves performance. Please note that this decomposition requires that other intermediate
vectors and computations are decomposed similarly.

5.4 Convergence

In this section, we discuss the convergence behavior of our method, given the criteria described
in Section 5.3 for switching constraints. First, we show that a minimal residual, in combina-
tion with all constraints satisfied, implies that a global solution is found. Next, we show that
successive updates of constraints lead to a state in which all constraints are satisfied. Finally,
we show that when all constraints are satisfied but the residual does not reach the minimum,
its gradient will reach the minimum instead.

5.4.1 Global Convergence

The Delassus operator (LA7'LT), where LT = ( JjT JtT ) describes, for each pair of constraints
that share the same object in the inverted generalized mass matrix A™!, their influence on each
other. The inverted Delassus operator can therefore be seen as the “solution” to the contact
problem and describes the influence of each pair of constraints onto each other, no matter how
many objects and constraints are present in the chain between the two constraints. Hence,
this solution is a global one. In our method, the Delassus operator is not used. However, the
CR method minimizes ||By — d||, with y = B™!d its minimum. Given the blockwise inverse of
B, see Equation (5.22), minimizing ||By — d|| also implicitly applies the Delassus operator. This
is equivalent to solving both A and y through the Delassus operator, and applying these forces
to the bodies to obtain the unknown velocity v.

Within our method, the states of the constraints are actively switched when they do not agree
with the currently computed v,y and A. When some constraints change states, the method
must reset vectors r, p and so Bp, i.e., a state change influences the residual energy of the sys-
tem. This reset allows the method to search in a direction that minimizes the energy according
to the new state. Since all constraints and the deformation problem in sub-matrix A contribute
to the residual, a sufficiently small residual should imply that the problem is solved. However,
the solution can only be the global minimizer if all constraints are in their final state at con-
vergence. If not, then constraint states are changed, the residual will be influenced, and thus
the current solution cannot be a global minimizer for the problem. The method then continues
until all constraints are satisfied.

Assuming that the constraint states are known and only active constraints are considered,
a global minimum exists if the constraints are convex and A and the second derivatives of
the constraints (which vanish for linear constraints) are symmetric and positive definite, see
[114]. At this global minimum all multipliers of all active constraints are strictly positive (or
not clamped in case of friction constraints) and their distances are zero. When also inactive
constraints are considered, their multipliers are zero and their distances are strictly positive.
Hence, the complementarity conditions are satisfied, and the complementarity error vanishes,
see Section 5.6.3. Let us define such a residual that, once minimized, solves Equation (5.20)—
that is,
Av-b+Ji ()" +J{,S(7)M +_]£K(y')u/1

=| Jav—cn)+J1v—ca)” (5.23)

?TUt,SV —c/)+ (ST(Jt,KV - Ct))_
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Figure 5.5: Activation and deactivation of a constraint.

with J4 and J; corresponding to all active and inactive non-penetration constraints; similarly,
J:.s and J; k correspond to all static and kinetic friction constraints, respectively. Furthermore,
the multipliers and distances are clamped by operators (-)~, ()%, (-)** between (~co, 0), (0, ®)
and (—pA, pA), respectively. At the global minimum, ||ry|]| = 0 = ||r|| = 0. Conversely,
It = 0 = |Irgll = 0 if and only if no constraints are violated. Unfortunately, the final
constraint states for which this relation holds are not known a priori.

5.4.2 Constraint Updates

In the following, we reason about the implications of updating constraint states, as illustrated
by Figure 5.5. We consider only non-penetration and kinetic friction constraints, as static
friction can be treated similar to non-penetration constraints.

Activation of non-penetration constraints  Figure 5.5a shows the activation of an inactive
constraint Cy at iteration j. Its distance jiv; — ck, , is positive, thus not contributing to ry
nor to r. By minimizing [|r|| in the direction of p;, a new approximation v;,; is obtained,
which is closer to the current minimum v* [113]. If distance jxv;+1 — ck,, becomes negative,
the constraint is activated. Due to this active constraint, the new minimum v** along p; now
lies on the (green) plane defined by the constraint, which intersects the path between v; and
Vj;1. Since vj;q is now closer to the new optimum v** along p; than v; was to the previous
optimum, this constraint switch results in an improvement of the approximation. However,
the distance between v;,; and v** appears as an additional residual term via jxvj41 — ck,n =
jk(vjs1 — v*™), through the first term in the second row of Equation (5.23). Depending on the
used preconditioner, ||r|| might or might not decrease. However, since approximation vj.;
will now be closer to the new optimum, this step including the constraint activation is an
improvement.

Deactivation of non-penetration constraints  Figure 5.5b shows the deactivation of a con-
straint Cy. At iteration j, distance jxv; — c, , is negative. Next, a new step in direction p; is
performed, with v;,; the new approximation. When both A; < 0 and jxvj+1 — ¢k, > 0 hold,
the constraint must be deactivated. The negative multiplier in combination with a positive
distance indicates that the minimum lies on the positive side of the constraint and not on its
plane, and hence the constraint is working in the wrong direction and can be deactivated.
Since jxv — ¢k, is zero somewhere between v; and v;;1, and the new minimum v* lies on the
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Figure 5.6: Test case in which nine deformable spheres roll between a (transparent) rigid torus and a rotating spher-
ical object. Figure 5.7 depicts the residual norms at a certain simulation iteration.

positive side of the constraint, v;,; is closer to v* than v; was. Hence, the state is improved.
Since the positive distance jxvj+1 — ck,, and negative multiplier are clamped in Equation (5.23),
|lry|l decreases. The actual ||r|| again might or might not decrease since it is based on active
constraints and possible negative multipliers.

Delayed evaluation When constraints are evaluated and switched at fixed intervals, n op-
timization steps are performed that move the current approximation closer to the current op-
timum. This can also be considered as a single optimization step. If constraints do change
their state after n steps, a new optimum is obtained and the method proceeds in that direction.
This only demonstrates that the method eventually converges to an optimum. The choice of
n largely affects the performance of the method. In general, the larger n is, the larger is the
possibility that the method overshoots, which results in a smaller overall improvement per n
optimization steps. Therefore, we keep n large for large residuals, and decrease n with the
residual norm, see Line 2 of Algorithm 5.

Kinetic friction constraint update The update of a kinetic friction constraint changes the
magnitude A; and direction 8y of the kinetic friction force. Since the kinetic friction force is
placed on the right-hand side of Equation (5.20), any update of 8y and 1’ , results in a change
of ||r||. When directions ji ,v — ¢k, and 6_k are misaligned, 6_k is updated as described in
Section 5.3.2. Since each updated 6_k is somewhere between the previous 6_k and JktV——th
due to moving average 8y 4, the angle between these vectors becomes smaller, see Figure 5.4.

Due to this, also the change in j{i ,Okpd” (the kinetic friction force; see the right-hand side of
Equation (5.20)) becomes smaller. Therefore, successive increases of ||r|| due to these updates
(through the last term in the first row of Equation (5.23)) become smaller and eventually vanish
when 8 and ji ;v — ¢k ; are parallel.

Convergence plots  Figure 5.7 depicts the convergence behavior of our method for both pre-
conditioners for the simulation time-step shown in Figure 5.6. Figure 5.7a shows the residual
norms obtained with the Diag preconditioner. The residual shows a similar behavior com-
pared to the preconditioned residual and (preconditioned) constraint residuals. Although the
residual does not provide much information about the convergence, the preconditioned resid-
ual ||C™"/2r|| shows a decreasing behavior on the lower bound. A state change of a constraint
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Figure 5.7: Plots of several residual norms for preconditioners Diag and Full of the simulation time-step shown in
Figure 5.6. The non-linear updates of the constraints are indicated by circles. The preconditioned residual norm is
computed as ||C~!/2r||, the constraint residual norm as ||Ur ||, and the preconditioned constraint residual norm as
l[UC~!/2r||. Due to the infinity norm, the shown (preconditioned) constraint residuals represent an upper bound
of the actual constraint residual.

results in an increase of the residuals. After continuing for a few iterations, the preconditioned
residual is (in most cases) smaller compared to its norm before the state update. Additionally,
the (preconditioned) constraint residual shows an overall decreasing trend on the upper bound
of the error, indicating that, in general, the update of the constraint states eventually results in
a better approximation. This behavior also explains the effect of the optimization discussed in
Section 5.3.5 in which the constraints are evaluated at a certain rate depending on the residual
norm. This allows the method proceed towards the new optimum for a few iterations until
constraints are re-evaluated. The large peaks in the plots correspond to the non-linear up-
dates of the constraints. The intervals between successive non-linear updates become smaller
as the approximation approaches the final solution, see Section 5.3.3. Figure 5.7b shows the
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(preconditioned) residuals obtained with the Full preconditioner, which shows less correspon-
dence with the (preconditioned) constraint residuals. However, the constraint residuals show
the same behavior compared to the Diag preconditioned case, albeit the Full preconditioned
case results in a much faster convergence. The constraint tolerance for both experiments were
€, = 107° and a relative tolerance for the residual of €; = 107°.

5.4.3 Local Minima

Whenever the problem is over-constrained, no unique solution exists. Hence, the problem
has local minima. At such a local minimum, the gradient vanishes. Since the CR method
minimizes ||[C™/?r||? = |r’C~'r|, the gradient of the minimized function (2BC~'r) becomes
zero at a local minimum. When this happens, o becomes zero in Line 9 of Algorithm 4, so the
approximation cannot be further improved. Next, the computation of  will result in a division
by zero, causing the method to break down. To prevent this, the norm of the gradient function
(second test in Line 22 of Algorithm 4) is also inspected, as proposed by Hayami [85]. If this
norm drops below €;, the method has computed a least-square approximation for the current
local minimum. This allows the method to perform the checks in Lines 23 to 25 and to update
the problem.

5.5 System Overview

Non-penetration and friction constraints act on subsets of vertices of the colliding models.
To constrain the movement globally, all vertex-face and edge-edge collision pairs should be
detected, collected, and assembled in (global) matrices J and J;. Since the solution of Equa-
tion (5.20) is collision free, a standard collision detection system would not find any collisions
in the beginning of each simulation time-step. This suggests that all collisions would have to be
detected inside the internal loop of the CR method. However, doing so would be prohibitively
expensive in terms of computations.

Algorithm 4 gives the overall pseudo-code of our collision handling system, which is further
described in the following sections and in detail in Chapter 6. Within our approach, we search
once for all possible candidate collision pairs at the beginning of each simulation time-step, see
Line 5 of Algorithm 4. Then, all existing constraints are updated. When the solver converges,
a collision check is performed, see Line 25. If no new collisions are found, then all active
constraints are checked if their configuration and state agree with the actual geometry and
velocity; if necessary, constraints are re-linearized or removed from the system, see Line 27.
Finally, if the system is not updated, the state of the simulation is guaranteed to be collision
free, and the error made by each constraint is guaranteed to be less than the desired tolerance.

5.5.1 Collision Detection

When the simulation is initialized, a Bounding Volume Hierarchy (BVH) is constructed, con-
taining axis-aligned bounding volumes enclosing all surface faces (triangles) of the simulated
bodies (which coincides with the simulation meshes; see Line 2 of Algorithm 4); our hier-
archical data structure is a binary tree. The BVH is used to quickly find potential face-face
collisions by testing for intersection of their bounding volumes. Since deformable objects can
have self-collisions, all faces of an object must also be tested for collisions with all other faces
of the same object. Since bounding volumes of adjacent faces will intersect, one approach to
discard false positives is to terminate the tree traversal when both faces belong to the same
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(self-collision free) surface patch, see [188]. When there is a possibility that both faces can
collide at the end of the time-step, both faces must be included in further collision checks in
order to guarantee a collision-free state at the end of the time-step.

To detect nearby faces of a given face, we extend each bounding box by 3Atv in the directions
of its vertex velocities. For each face represented in the BVH, a set is created that stores all
nearby and potentially colliding faces. All faces whose extended bounding volumes intersect
the one of the current face are selected by traversing the tree. These face-face pairs are then
used to create so-called candidate lists. The candidate lists contain, for each vertex/edge, a
list of all nearby faces/edges (the candidates) that can potentially collide; duplicate edge-edge
pairs are discarded.

5.5.2 Raw Collision Detection

At convergence, all candidate pairs (vertex-face and edge-edge) are checked for collisions given
the current velocity, see (Line 25). First, each collision pair is updated (time integrated) using
the current velocity. If the pair has intersected, a root-finding method, such as the Brent-
Dekker method [145], is used to find the collision point, contact normal, and barycentric coor-
dinates, given the current and initial geometry state (at the beginning of the time-step). Then,
the corresponding non-penetration constraint is initialized, activated, and stored in matrix J,
see Section 5.2.3. Likewise, the corresponding friction constraints are initialized and stored
in J;. Since this collision check is performed when the solver converges, new constraints are
added as long as the state is not collision free. This is similar to the Constraint Manifold Refine-
ment (CMR) method of Otaduy et al. [138], to ensure that no collisions/constraints are missed.
Please note that the collision check relies on the candidate pairs, so that (multiple) tree traver-
sals are avoided. In some exceptional cases, a vertex can move out of its extended bounding
volume such that collisions might be missed. If such a case is detected at convergence (Line 25),
using a simple vertex-in-box check, we need to search locally for additional missed collisions.
This search is done by first computing the extended bounding box and rechecking the BVH for
collisions with the updated box. If any new box-box intersections are found, the correspond-
ing candidate lists are updated, and a collision check is performed on the updated candidate
lists. The overhead of this additional check is relatively small — up to 5 % of the total collision
detection time.

5.6 Results

In this section we validate our approach by providing quantitative and qualitative results, and
comparing these to those of existing methods. An overview of example results is shown in
Figure 5.9.

5.6.1 Varying Parameters

The plot in Figure 5.8 shows the average number of solver iterations during the first second of
the experiment shown in Figure 5.9¢ for different values of At. In general, a larger At requires
more iterations per simulation step, but fewer simulation steps are needed for advancing the
simulation to a given timestamp. However, in all cases, the total amount of solver iterations
is comparable. We observed that simulations with smaller time-steps reveal subtle motions of
objects, but require more iterations; however, such details are not visible when larger time-
steps are used.
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Figure 5.8: Number of solver iterations per simulation step for different values of Az(s) and the experiment shown
in Figure 5.9¢, with E = 5 X 10°Pa.

We have also changed the stiffness parameter E, while keeping At fixed at 0.001 seconds. A
smaller stiffness parameter generally results in faster convergence for unconstrained problems.
When the objects are less stiff, we observed that the method requires more Newton steps
due to larger deformations, and this often requires more iterations. For instance, the setup
shown in Figure 5.9e is simulated using varying stiffness parameters starting from 5x 10°Pa to
3.125X10° Pa by dividing E by two for every simulation. Only for the case E = 3.125x10°Pa was
the total amount of iterations about 1.5 times larger than for E = 5 X 10°Pa. In all other cases,
these numbers were similar. Please note that it is difficult to quantify these results because
a different stiffness parameter results in a different behavior of the material (and simulation).
In case of a collision, the time that objects have contact is larger for flexible objects, which
influences the behavior of the method.

5.6.2 Comparative Results

In this section, we compare various versions of our method against ICA [138] and SP [101].
For this comparison we have simulated three setups, with varying difficulty degrees, see Fig-
ures 5.9b, 5.9¢ and 5.9h. All methods used double-precision arithmetic and converged to the
same absolute error (¢; = 5 X 107°). Additionally, our method uses a threshold for updating
vectors &8y of €9 = 1.2 degrees and used a constraint tolerance / safety distance €, = 5 X 107°.
All objects had the following material properties: v = 0.2 (Poisson’s ratio), E = 5 X 10°Pa
(Young’s modulus), and p = 1000kg/m> (density). Furthermore, a gravitational acceleration
of g = 9.81m/s* was used. The FEM machinery is based on co-rotated finite elements [124]
and no additional damping was used. Our test machine was equipped with a 4 GHz AMD
FX-8350 CPU (using one core) and 16 GB of RAM memory. All methods use a warm start
(reuse values from the previous simulation iteration), the same collision detection system, the
same optimized routines for vector-vector and matrix-vector operations, and the same toler-
ances/precision in an attempt to make a fair comparison.

The first experiment from Figure 5.9h contains 120 randomly placed elastic rings, simulated
with a time-step At = 0.001s. The total number of contact points grew to over 1500. The
second experiment (Figure 5.9¢) contains 140 objects, which are aligned in a pyramid. For At,
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Figure 5.9: Simulations of multiple elastic objects. The collision response is efficiently computed through our method that can handle complex situations, such as: tens of

thousands of constraints, large impact forces and complex interactions, see text.
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we used 0.0005. The experiment shown in Figure 5.9b uses complex objects in which many
internal elements exist. For this experiment, we randomly placed 120 bunnies with a Young’s
modulus E of 5 X 10°Pa and simulated with At = 0.001s. The friction coefficient was set
to 0.5 for all simulations. Table 5.1 shows, for each method, the average (and median) time
spent on collision detection, contact resolution, solving the whole contact problem, and the
average number of iterations performed by all methods. Furthermore, additional details about
the simulations are provided. The application of the Full preconditioner required about 15% of
the total time, whereas its construction time is negligible — less than 0.1%.

Hyper-Elastic Materials

In addition to linear FEM, we also made a comparison using highly deformable, hyper-elastic
models. The stiffness of hyper-elastic materials changes with the amount of compression.
For a neo-Hookean material, the stress will approach infinity when the volume of the object
approaches zero. Due to this, numerical methods have to deal with large contact forces. Unfor-
tunately, directly using these materials can cause problems, as small changes in deformation
could result in excessively large forces. To deal with this, the underlying energy density func-
tion is linearly extrapolated, as described in [168]. Furthermore, since more deformation is
involved, all methods need to re-linearize constraints more often. For ICA, this implies that
the LCP matrix also needs to be re-computed. On average, constraints are re-linearized 5 times
per time-step, with peaks approaching 10 times. In our test case, see Figure 5.1, a neo-Hookean
energy density function is used and extrapolated when the volume of an element drops below
70% of its initial volume. Furthermore, the Lamé parameters were set using Young’s modulus
of elasticity E = 5% 10°Pa and Poisson ratio v = 0.2. An Armadillo consisting of roughly 200K
degrees of freedom is pulled through a set of rotating cylinders, resulting in large compres-
sions, deformation, and contact forces. The total number of iterations and total computation
time are presented in Figure 5.11. For all methods, the total number of iterations and com-
putation time increase with the amount of compression. This test also faces the underlying
collision detection with numerous challenging cases, which are all resolved correctly.

Comparison to ICA

We compared our approach to the elegant and flexible ICA method of Otaduy et al. [138]. We
chose this method for comparison because it constructs and solves complete LCPs (instead of
an approximation [50]) and takes the full generalized mass matrix into account when com-
puting collision responses. Both of these aspects are essential when dealing with FEM-based
deformable bodies. Furthermore, the computation of non-penetration and friction multipli-
ers are combined, making the method very efficient. Please note that we needed to compute
the unconstrained velocity with a slightly lower tolerance in order to guarantee that the final
approximation is accurate enough.

In Figure 5.10 and Table 5.1, a comparison is shown between our method and ICA. We compare
the average numbers of iterations and average time per time-step. ICA performs, per iteration,
up to two Sparse Matrix-Vector (SpMVs) multiplications: one for performing a (block) Gauss-
Seidel step in the outer loop and one (block) Jacobi step for setting up the right-hand side
of the LCPs. Additionally, the iterations spent on computing the unconstrained velocity are
considered. We did not explicitly count the number of iterations used for solving the LCPs, as
these matrices generally are very sparse, and the LCPs converge quite quickly.
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Figure 5.10: Number of solver iterations per time-step for different methods, performing the simulation shown in
Figure 5.9h (left) and Figure 5.9e (right). CR (Full) represents our complete method including the Full preconditioner.
CR (Diag) represents our method with the diagonal preconditioner, in which the friction cone is replaced by a friction
pyramid. SP (Active Set) is an implementation of the SP method, in which the QP problems are solved using
two CR-based Active Set methods. SP (2xCR) represents an implementation of the SP method in which the QP
problems are solved by a modified version of our diagonally preconditioned CR method. All methods converged
to the same absolute error €; = 5 x 107>, and used the same constraint tolerance e; = 107 and double-precision
arithmetic. The dashed plots represent test case “Rings*”, in which the stiffness was increased.

For both methods, we have observed that computing the multipliers converged quickly com-
pared to the global problem. Within ICA, a small LCP is solved per iteration, which converges
very rapidly. In our approach, the convergence of the multipliers is slower because each itera-
tion improves the multipliers by just a bit, whereas ICA actually solves an LCP. Nevertheless,
the convergence rate of the contact problem is mostly bounded (especially for deformable
bodies) by the convergence of the velocity (the deformation part) rather than that of the mul-
tipliers. For more complex cases, like the Pyramid setup, a significant amount of time is spent
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Figure 5.11: Total run time and solver iterations for a hyper-elastic object, see Figure 5.1 and case ‘Armadillo in
Table 5.1. The total running-time includes all tasks performed during the process, including collision detection.

on the LCPs. In the hyper-elastic test case (Figures 5.1 and 5.11), ICA tends to perform slower
over time. First, per time-step more re-computations of the LCPs are required due to the non-
linear motion and deformation. Second, due to the computation of the unconstrained velocity
(which releases all stress), more collisions are detected, and more constraints than needed are
generated. This results in a much larger overhead spent on constructing and solving the LCPs.
Due to the increased stiffness of the problem, the PGS and GS methods converge slower as
well. Finally, since the test case in Figure 5.1 also involves rigid bodies, the constructed LCP
contains dense regions, which increases the time per PGS iteration. In Section 5.7 we shall
further discuss the differences between both methods.

Comparison to Staggered Projections

We also compared our approach to SP [101]. The SP method solves the contact problem by
first computing the unconstrained velocity, which is then corrected by separately computing
impulses of the non-penetration and friction constraints. This correction procedure first solves
a QP problem for non-penetration constraints, provided that some estimate of the friction
impulses is available, followed by a QP solve of the friction problem using non-penetration
impulse estimates. This process continues until an optimum is found that minimizes both
the friction and non-penetration sub-problems. Since a FEM-based discretization results in a
large yet sparse matrix A, we have used a diagonally preconditioned MINRES/CR based Active
Set approach for solving the QP problems rather than a dense solver, as in the original work
[101]. Each individual solve uses a “warm start”. The relative error of the friction impulses is
computed by solving a linear problem using the CG method. Since the SP method does not
guarantee a collision-free state, we have replaced the CR solver within our framework from
Algorithm 4 with the SP method such that at convergence, additional constraints can be added
and corrected.

In Figure 5.10 and Table 5.1 a comparison between our approach and the SP method is shown.
Since SP solves two QP problems per iteration, the total number of QP solver iterations per
simulation step is counted. We have also used a modified version of our CR approach as a QP
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Method Resolution (s)  Collision (s) Time (s) Iterations Constraints ~ Objects Elements Faces Setup At(s) E(Pa)
SP (Active Set) 5.6(3.2) 0.68(0.72) 6.2(3.9) 1546 (780) 2385 (2919) 120 12960 17280 Rings 0.001 5% 10°
SP (2xCR Diag) 5.0 (4.4) 0.68 (0.72) 5.7(5.2) 814 (728) 2340 (2886) 120 12960 17280 Rings 0.001 5% 10°
CR (Diag) 2.8(2.3) 1.1(1.0) 3.9(3.5) 451 (340) 2435 (2976) 120 12960 17280 Rings 0.001 5% 10°
ICA 0.8(0.7) 0.85(0.85) 1.6(1.5) 180(134) 2846 (3180) 120 12960 17280 Rings 0.001 5% 10°
CR (Full) 0.52(0.44)  0.94(0.96)  1.46(1.43) 97 (76) 2280 (2466) 120 12960 17280 Rings 0.001 5 10°
SP (Active Set) 20.8(11.75) 2.9(2.9) 23.7(14.9) 1088 (604) 8647 (9651) 140 60480 73920 Pyramid  0.0005 5% 10°
SP (2xCR Diag) 15.6(11.5) 3.7(3.8) 19.3(15.4) 463 (332) 8901 (9939) 140 60480 73920 Pyramid  0.0005 5% 10°
CR (Diag) 7.6 (6.1) 4.4(4.3) 12.0(10.8) 229(179) 8871 (9877) 140 60480 73920 Pyramid  0.0005 5% 10°
ICA 14.2(3.8) 3.77(3.61)  17.95(7.77) 558 (75) 8734 (9765) 140 60480 73920 Pyramid  0.0005 5% 10°
CR (Full) 2.3(1.9) 3.77(3.70)  6.0(5.6) 69 (59) 8565 (9546) 140 60480 73920 Pyramid  0.0005 5% 10°
SP (Active Set) 20.2(15.65) 0.9(1.06)  21.7(16.7)  3373(2423) 2290 (2892) 120 12960 17280 Rings* 0.001 5% 10°
ICA 2.1(1.7) 0.78(0.75) 2.7(2.5) 655 (550) 2439 (3217) 120 12960 17280 Rings* 0.001 5% 10°
CR (Full) 0.8(0.6) 0.84(0.80) 1.6(1.40) 154(103) 1898 (2232) 120 12960 17280 Rings® 0.001 5% 106
ICA 174 (160) 4.95(4.92) 179 (165) 7206 (6261) 876 (1023) 120 152400 88560 Bunnies  0.001 5 10°
CR (Full) 31.3(17.8) 4.89(4.84)  36.2(22.7) 900 (534) 700 (793) 120 152400 88560 Bunnies  0.001 5% 10°
SP (Active Set) 395(310) 6.8(4.5) 404 (317) 6839(5393)  4335(4101) 1 385739 20978 Armadillo 0.0005 non-linear
ICA 255 (95) 4.15(3.81) 259(99) 344 (286) 4170 (3705) 1 385739 20978 Armadillo 0.0005 non-linear
CR (Full) 6.55 (5.44) 4.14(3.6)  10.71(9.65) 81(71) 4350 (3633) 1 385739 20978 Armadillo 0.0005 non-linear
CR (Full) 19.38(18.88)  3.54(3.32)  22.9(22.4) 480 (463) 4044 (4405) 9 115659 46080 Bearing  0.001  non-linear

Table 5.1: Comparison of our method (CR (Full)) against various instances of Staggered Projections (with Active Set solvers or a modified version of our approach) and ICA.
The numbers represent mean (and median) values over a fixed stretch of time-steps. The number of active constraints equals three times the number of contacts.
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solver for SP. In this solver, the kinetic friction treatment, described in Section 5.3.2, is replaced
by one in which a friction pyramid is used. This is because our approximation of the friction
cone is not suitable for use in the SP method.

The main reason for the difference in the number of solver iterations is that SP solves two QP
problems, which both influence each other. In our approach, both non-penetration and friction
impulses are approximated, and constraints are allowed to update their state more frequently.
Due to this, our approach switches the state of a constraint when the current approximation
starts to deviate from the (unknown) global minimum. Since SP keeps a part of the constraints
fixed, while updating the other set, it can, for instance, omit changing the state of a non-
penetration constraint while solving for the friction impulses. This can result in a sequence
of approximations that is deviating from the (unknown) global minimum for a longer stretch
of iterations. In some exceptional cases we have observed a slow convergence due to cycling
between non-penetration and friction constraints. The total speedup of our method compared
to the Active Set-based SP method is roughly between 7 and 12 times. Replacing the Active
Set solvers by modified versions of our method, an improvement in the iteration count of
about 2 times was obtained when a diagonal preconditioner was used. Additionally, we have
also applied a modified version of our Full preconditioner (in which either the active non-
penetration or static friction constraints were present), but this approach was not successful.

To run the experiment from Figure 5.9¢ using SP, we needed to reduce At to 0.0005s, because
for larger time-steps, the method did not converge. Even with the smaller At, solving both
QP sub-problems converged properly, but applying each outcome to the other sub-problem
resulted in an oscillating and diverging behavior. This problem appeared, for example, when
the first two layers of objects collided with a large impact; the effects are visible in Figure 5.10b,
in which larger iteration counts (spikes) can be seen. A similar observation was done for the
hyper-elastic test, Figures 5.1 and 5.11. Here also the method takes a large number of iterations
for solving the individual QPs, and then it requires many steps for finding a global optimum. A
tighter coupling between the friction and non-penetration constraints seems to be necessary
in these kind of situations. Using our method, we were able to increase At even further and
even for stiffer models, see Section 5.6.1. When the stiffness of the models is increased (setup
“Rings™”), SP seems to converge much slower compared to both ICA and CR. When stiffer and
more complex objects are used (case “Bunnies”), SP did not properly converge, whereas the
QP problems did converge. Therefore these results are not present in Table 5.1.

Comparison to Reduced-Form Methods

Reduced-form methods transform the complete contact problem into a reduced one and solve
dynamics and contact separately. These forms require the Delassus operator W = LA™'LT,
which is often used in methods in which the number of degrees of freedom per object is rel-
atively small, such as granular materials, rigid bodies, reduced deformable bodies, or fiber
simulations. In those cases, the generalized mass matrix A can be inverted efficiently. For de-
formable bodies with a large amount of degrees of freedom, the computation of A™! is more
demanding and may bring extra inaccuracies. As suggested in Bertails-Descoubes et al. [25],
A~! can be found through a Cholesky decomposition followed by forward and backward sub-
stitutions. Since A™! contains large and dense blocks, and not all columns of A™! are required
for constructing W, it is preferable to compute W through m forward and backward substitu-
tions involving A, LT and L, with m the number of constraints, see [47]. This omits the explicit
form of A™!, which can have a very large memory footprint.
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Figure 5.12: Timing comparison between our method, compared to the time required for constructing the Delassus
operator LA™'LT using the optimized approach of Daviet et al. [47], for the Rings, Armadillo and Bearing test cases,
respectively, in Table 5.1, see also Figures 5.1, 5.6 and 5.9h. The numbers in the legend refer to the left (1) or right (2)
y-axis.

The method in Tonge et al. [180] does not explicitly compute W but computes, per contact
block, each individual LA™'LT for each constraint and object associated with the contact block
and accumulates this in a small matrix. The computational complexity is similar to the method
in Daviet et al. [47], in which only the non-zero blocks of W are computed. Their running-
time analysis for constructing W assumes that the degrees of freedom per object are bounded,
and that the computation time is dominated by the squared number of constraints. Hence, by
exploiting the block-diagonal structure of A, W can be assembled efficiently.

The main problem with deformable bodies is to compute W in reasonable time. Unfortu-
nately, all mentioned methods assume that A™! is easy to compute, which is not the case for
deformable bodies with a large amount of degrees of freedom. Figure 5.12 shows the time con-
sumed for computing W through a Cholesky decomposition (by also taking the block structure
of A into account [47]) and our method for the same number of constraints. This clearly shows
that the computation time of W grows with the number of constraints, where its slope is de-
termined by the complexity of computing A™! (which mainly depends on its structure and/or
conditioning). Once all blocks of the Delassus operator are computed, the methods can start
solving the problem, typically using a (P)GS method in which W is used as the iteration ma-
trix [47, 180] (both methods explicitly require the diagonal blocks of W), or by using a Newton
method in which at each iteration the search direction and step size is found by solving linear
systems involving W [25]. Alternatively, in the latter method, the Delassus operator can be
applied implicitly using an operator which solves a linear system involving A. However, we
experienced convergence issues when solving a linear problem involving this operator for the
examples shown in Figures 5.1 and 5.9h. This is likely caused by the bad conditioning of W
due duplicate constraints or multiple constraints between the same degrees of freedom, which
typically occur between rigid and/or deformable objects, or in cases of large compression. In
fact, they mention that their method cannot solve this kind of problems, including stacking of
rigid bodies as shown in Figure 5.2c for our method. Similar issues are mentioned in Daviet et
al. [47] when L becomes rank deficient. Please note that Figure 5.12 only considers the time
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required for constructing the Delassus operator. On top of that, the actual running time of the
method must be added. Furthermore, the plot does not take into account additional updates of
W due to re-linearized constraint Jacobians, which boils down to re-computing W a few times
per time-step.

Comparative Timings

Comparing only the iteration count, our approach requires between 10 and 60 times fewer it-
erations compared to SP. Similarly, our method requires between 2 and 8 times fewer iterations
than ICA. When the actual computation time is taken into account, the differences are small for
relatively simple models. When the complexity of the models increases (e.g., due to arbitrary
shaped tetrahedral elements and many internal vertices), the timing differences become larger.
This is due to the increased density and conditioning of matrix A. The conditioning affects the
convergence rate, whereas the density affects the time spent per iteration. Furthermore, when
a model has many more elements than surface faces (due to internal vertices), the ratio colli-
sion detection / collision response, shifts such that collision detection uses a smaller portion
of the total time. Experiment “Bunnies” and “Armadillo” in Table 5.1 depicts such cases. The
Armadillo test case shows large differences in time and iteration count between the methods,
see also Figure 5.11. The differences are mainly caused by the large compression of the mate-
rial, which results in large contact forces and more linearization steps of the constraints due
to the larger deformations. SP has difficulties in finding an accurate global minimum, whereas
ICA spends more time on setting up and solving the LCPs.

Figure 5.9 shows additional example results by our method. The first snapshot shows various
elastic objects, of different sizes and resolutions, interacting with each other. In total, 201
objects were simulated, containing about 150K tetrahedral elements; the maximum number of
constraints peaked at 2K. The average speedup compared to ICA was 4.35%, whereas the time
spent on collision detection was negligible. Figure 5.9d shows an example of 2K elastic cubes
that form a pile. The simulation contains about 88K tetrahedral elements, and the number
of constraints peaked at 10K. Figures 5.9e and 5.9g shows examples in which external forces
and motions are used along with the simulations. For these examples a Young modulus of
E = 5 10°Pa and a Poisson ratio of 0.4 were used. Additionally, Figure 5.9¢ depicts Pyramid
test case, in which a pyramid is compressed by a large and rotating glass plate, resulting in
large contact forces between the objects.

Memory Usage

The experiment shown in Figure 5.9h required about 380 MB of RAM for the whole simula-
tion. Sparse matrix A had dimension 25920 X 25920 with an average density of 17 elements
per row. The simulation shown in Figure 5.9e peaked to about 1.8 GB of memory with A of
dimension 109200 X 109200 and an average density of 17 elements per row. For Bunnies test
case, about 2.2 GB RAM was allocated, with A of dimension 147600 X 147600 and an average
density of 27 elements per row. Most of the allocated memory is used for collision detection
related structures and the FEM machinery. We have also compared our CR-based method with
a MINRES based implementation. Both versions require similar amounts of memorys; this is be-
cause both methods store the same matrix and allocate a similar amount of vectors. Therefore,
no significant difference exist with respect to memory consumption.
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Figure 5.13: Plot of the Fischer-Burmeister function for our method, corresponding to the experiment shown in Fig-
ure 5.9h. The solver tolerance was set to €; = 5x 107>, and constraints were allowed to change if the corresponding
state change was larger than e, = 5 x 1075.

5.6.3 Error Measurements

The Fischer-Burmeister function,

floy) =x+y—x*+¢? (5.24)

can be used to measure the complementarity error made when solving complementarity prob-
lems, ie., ||[Jv — ¢)TA||. Figure 5.13 shows the maximum error measured per constraint for
our method for the experiment shown in Figure 5.9h. For each individual constraint, x is set
to the corresponding multiplier and y is set to the corresponding distance value, e.g., jxv — ck.
For kinetic friction constraints, x is set to the difference between pAx and ||yx||, which should
evaluate to zero if the constraint is satisfied. Furthermore, since x and y contain two different
quantities, x is scaled by the corresponding value on the diagonal of matrix S4, see Section 5.3.4,
such that both x and y represent a distance error. As shown in Figure 5.13, both static friction
and non-penetration constraints measure in general a complementarity error that is below
the specified solver tolerance €; = 5 x 107>, Furthermore, the plot shows the maximum error
among all constraints for a given time-step. Kinetic friction constraints yield, in general, an
error smaller than e, = 5 X 107.

5.7 Discussion

Solvers for indefinite problems The CR method is very similar to the MINRES method
[139], and in fact, for positive-definite matrices, both methods perform identically [63]. Even
for indefinite problems, both methods perform similar. The main difference between CR and
MINRES is the computation of the updated search vector. CR uses a two-term recurrence,
similar to the CG method, whereas MINRES uses a three-term recurrence. We have imple-
mented a MINRES version of the method described in Algorithm 4 using many combinations
of preconditioners (None, Diag and Full) and friction treatment (cone and pyramid). For all
tested cases (mentioned in Table 5.1), the MINRES version performed most time-steps very
similar to our CR version. However, sometimes it had serious convergence issues leading to
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failure. Especially when multiple bodies were colliding, convergence issues were observed,
which were not observed within our CR-based method. Thus, when constraints are updated
prior to convergence (as in our method), MINRES is not recommended. Conversely, we suc-
cessfully applied MINRES as an Active Set QP solver in the SP method. The results were very
similar to the CR-based method in which the constraints were kept fixed. Additionally, both
CR and MINRES can break down in similar situations, in which a least-square approximation
is computed. To alleviate this, an extra stopping condition is typically used, see Section 5.4.3.
Within CR, vector BC™!r is already available, whereas MINRES should explicitly compute it,
which makes the method less efficient.

Other popular methods for solving indefinite problems are generalized versions of CR and
MINRES, such as GCR [52] and GMRES [154], which also apply to non-symmetric problems.
Both methods store one additional vector per iteration, which is used in all subsequent itera-
tions. This results in growing storage and computational requirements. Since these methods
rely on a history of search vectors, one could ask how GCR or GMRES perform when the
methods are restarted after every constraint update. We leave this for future work.

Differences withICA  The speed difference between our method and ICA is mainly due to the
different solvers used: Gauss-Seidel in ICA versus preconditioned CR in our method. Using the
full preconditioner from Section 5.3.4, the CR solver converges significantly faster compared,
for example, to a simple diagonal preconditioner, and this is therefore crucial for efficiently
computing the collision response. Within ICA, per iteration, one Gauss-Seidel approximation
is computed for refining the velocity correction and one Jacobi approximation for estimating
the right-hand side of the LCP. We have observed that if the unconstrained problem is solved
relatively fast, the differences between our method and ICA are smaller. Conversely, if the
unconstrained problem is more difficult to solve (especially for stiffer and/or more complex
models), our method performs significantly better than ICA, see the Bunnies test case in Ta-
ble 5.1. However, we expect smaller differences in cases where A has a low density and low
condition number. Apart from the underlying numerical methods, other differences also exist.
For example, at the beginning of each time-step, ICA computes an unconstrained velocity that
is used as input for the collision detection phase. Then, the collision detection stage resultsin a
large number of collisions, which are subsequently used for computing the velocity correction.
The problem with performing collision detection using the unconstrained velocity is that all
elastic energy is released at once. The collisions found afterwards do not necessarily match
the collision state at the end of the previous time-step, and hence the multipliers computed in
the previous step will not result in a nearly resolved collision state. Due to this, ICA requires
more steps to find the proper set of constraints and needs more iterations to converge. This
becomes clearly visible in Figure 5.11. The difference in total computation time can become
larger than 10 times. To make ICA more efficient in these situations, we suggest to follow our
approach in which the constrained velocity is used for the collision test. The main advantage
of this is that valid active constraints are reused, so there is no sudden release of the internal
elastic energy, resulting in fewer new collisions. For the test case described in Section 5.6.2, the
cylinders were made of rigid objects. As a result, the computed LCPs will have large and dense
regions, which affects the construction time of the LCP matrix and running time of the PGS
method. This additional overhead is visible as the time per time-step increases more than the
number of iteration. This can be largely factored out using a modified PGS method, see [119]
for more details. However, the total convergence behavior remains similar. This overhead is
not observed while running the same test case using our method.
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Differences with Staggered Projections SP uses a loose coupling of the non-penetration
and friction constraints, by sequentially solving the non-penetration and friction sub-problems.
The advantage of this approach is that kinetic friction is modeled through a BLCP for which the
bounds are computed by the non-penetration sub-problem. The disadvantage of this coupling
is that the sub-problems respond much later to state changes in the other sub-problem. This
can require more iterations to obtain convergence, see Figures 5.10 and 5.11. If we compare
our method to SP with Active Set solvers and a hybrid version using our modified solver, we
can also see the effects of updating the constraint states while the method has not converged
yet, see the results of Rings in Table 5.1. Within the Active Set version, the solvers converge
quickly, although not necessarily to the optimal solution. By changing states, eventually the
method converges. The hybrid version allows changing of non-penetration or friction con-
straints, depending on the current sub-problem. This results in a faster convergence, but still
the non-penetration and friction constraints have the same loose coupling, which still can
lead to a slow converging sequence of approximations. Within our approach, this coupling
is much tighter, as constraints are allowed to change at much smaller intervals. Hence the
method converges faster, but this mechanism introduces some additional overhead.

Discretization methods We have used a (first-order) semi-implicit time integration scheme
that solves an implicit system for the unknown vertex velocities. The new velocities are then
used explicitly to compute new vertex positions. However, our method is not bound to this
scheme, and instead it can use other/higher-order (implicit) integration schemes, such as the
Newmark-Beta method. When higher-order methods are used, the constraint matrices J and J,
are extended and the evaluation of the constraints involves additional quantities, but the basic
principle remains the same. Furthermore, we have used the FEM for the spatial discretization
(represented by matrix A), but this can be replaced by other discretization schemes.

Towards larger time-steps  Figure 5.8 shows results of our method for the same simulation,
executed with different values of At. In general, the method converges faster for smaller At,
but more time-steps are required to simulate a certain time span. Therefore, the total number
of solver iterations remains approximately similar while simulating the same time span with
different At. For larger time-steps, more Newton steps are required, resulting in more re-
linearizations of the constraints, and the set of potential candidates increases; both affect the
runtime. When the time-step becomes larger than 0.004s, the constraint tolerance €, should
also be scaled with At. We have tested the method with time-steps of 0.02s. In this case, the
problem to solve per time-step is more difficult, but agrees with the findings in Figure 5.8.
To apply this method in real-time applications, such as haptics [112], either the resolution of
the meshes should be decreased, and/or parallelization should be used. With lower-resolution
meshes, the number of potential collisions decreases as well.

Limitations We are bound to use a customized collision detection system, whereas ICA and
SP, for example, can use any of the highly optimized systems available. Since our method
is very accurate, it is less forgiving when conflicting constraints are created due to wrongly
detected collisions. This puts additional requirements on the collision detection method such
that no incorrect or conflicting constraints are created. Furthermore, the friction treatment
in our approach may not allow for an easy replacement of the proposed CR-based solver, for
example, by a PATH solver.
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5.8 Future Work

In this chapter we have mainly focused on collision response handling for deformable mod-
els. However, we plan to further investigate the performance of our approach for coupled
deformable and rigid-body simulations. As shown in Section 5.6.2, the LCP matrices lose their
sparsity in such cases, resulting in larger computation times for the LCPs. Such a problem is
not observed in our method. In Section 5.6.2, non-linear materials were used by linearizing the
underlying energy density functions of the materials at the beginning of each time-step. One
step further would be to extend our method such that also the complete non-linear problem
is solved by using our approach in Newton-based solvers, which are usually built on top of
linear solvers. Finally, all computations of our method can be easily parallelized, and we are
in the process of porting the entire method on the GPU. Based on the results reported in [183]
and our initial experiments, we expect a speedup of at least one order of magnitude.
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6.1 Introduction

O O

Figure 6.1: Continuous Collision Detection (CCD) will find the time and configuration of objects and individual fea-
tures of the geometry, at theirimpact time. Each object in motion describes a path over time. By defining a distance
function between both objects, a root-finder will find a configuration of both objects at the same time such that
they are touching each other, i.e., the distance function is exactly zero. In this figure, both objects start their path
at the dark-gray configuration and both advance through time to the light-gray instances. Both objects collide if
their paths intersect at the same time (visualized by the gray-scale). The red cross indicates the location where both
objects are colliding.

6.1 Introduction

n this chapter the collision handling system, briefly introduced in Chapter 5, will be de-
I scribed further in detail. In general, it is a Continuous Collision Detection (CCD) method that
finds the time and configurations of two colliding features, i.e., vertex-face or edge-edge pairs,
at impact. To find the time and configurations at impact, typically a root-finding method is
used. At the begin of each time-step, the initial configurations of each feature is known. After
computing a new approximate velocity, the geometry is updated and all current configurations
of all features are obtained. Now each pair contains for both features the begin and current
configuration, which describes a path in time for both features contained in the pair. When
along these paths the signed distance between both features changes from positive to nega-
tive, the paths of both features cross and there must be a configuration in between where the
signed distance is exactly zero. Using a root-finding method, the time and configuration of
the two features at this impact time can be found, see Figure 6.1. By using the configurations
at impact for initializing a constraint between both features, a collision response is computed
which separates them and prevents interpenetration.

The main problem with this approach is that the root-finding method requires a consistent
signed distance function for all possible configurations between the initial and current config-
uration of a pair. (With consistent meaning that the sign should only change when the state of
the features in the pair change from colliding to non-colliding, and vice versa.) Along this path,
the configuration of each feature can change significantly. Also the shape of the geometry may
locally change between convex and concave. Assuming that the sign of the signed distance
is computed correctly, only the computation of the distance remains. This computation is in
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general trivial for non-degenerate geometry, but requires special attention when the geometry
becomes locally degenerate. Another problem with collision detection of deformable objects
is that the geometry deforms and can invert. When inversions occur, inside and outside are
swapped, resulting in wrongly-detected collision. This in turn results in wrongly-initialized
constraints. Eventually this leads to a situation in which the solver is not able to compute an
approximation of the solution that satisfies all constraints.

In order to correctly solve the contact problem, it is therefore important that the signed dis-
tance is computed in a robust way, the geometry cannot (locally) invert, and that degeneracies
are handled correctly. To do this, Section 6.2 introduces a number geometric primitives that are
able to test for intersections, knowing that the configurations of these primitives may change
drastically between the initial and current configuration. With this, a number of degenerate
cases can be identified which need to be excluded from the intersection tests. Additionally,
one must take the non-linear motion and deformation of the geometry into account. When
the geometry deforms, the used constraints in the constrained optimization problem are likely
not agreeing with the corresponding geometry. This should also be taken into account in order
to guarantee a perfect collision-free state after solving the contact problem.

Discrete v.s. Continuous Collision Detection  Collision detection methods can be catego-
rized into two types, Discrete Collision Detection (a posteriori) and Continuous Collision Detec-
tion (a priori). Figure 6.1 shows a continuous collision detection method in which the trajec-
tories of both objects cross at a certain time during one simulation time-step. Such an event
is detected a priori and a response is computed which prevents the colliding objects to pass
through each other. To do so, in our method, a prediction of these trajectories is made using
approximated or intermediate velocities of the involved objects’ features. These velocities are
called approximated or intermediate because they do not reflect the final velocity, and they are
likely to change due to the computed collision responses. Each time velocities are updated,
also the trajectories may change. The main advantage of continuous collision detection is that
all collisions are detected, no matter how large the time-step or velocity is. This is sometimes
considered as bullet-proof. However, this approach also introduces some additional overhead
due to testing for crossing trajectories.

The other type is discrete collision detection. When a new velocity is computed, the simulation
advances to the next time-step by updating the positions of all objects and features. Instead
of checking the trajectories of the objects or features for crossings, the objects or features are
tested for intersections instead. If an intersection is detected, a response (and a new state) is
computed that separates the intersecting objects. Due to this, collisions are detected a poste-
riori, i.e., after they have occurred. The main advantage of discrete collision detection is that
is computationally cheaper than its continuous counterpart. However, before a collision is de-
tected and resolved, the objects or entities were already intersecting. Depending on the chosen
time-step size, these intersections could be visible. Additionally, the case shown in Figure 6.1
would not result in a detection of a collision event because the initial configurations have no
intersection. Also in the next time-step (the light-most gray instances), no intersection occurs.
Hence, the objects may pass through each other when the time-step is chosen too large.

Overview The presented collision detection method consists of three stages. First a broad-
phase collision detection is performed which populates the so-called Candidate Lists. Each
candidate list stores for each vertex or edge primitive, a list of nearby face or edge primitives.
These candidate lists are then used to perform a fine collision/intersection test on each candi-
date pair, which is formed by the feature associated with the candidate list, and nearby features
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6.2 Primitives

Algorithm 7: Pseudo-code for collision detection

Initialize BVH and additional data-structures, Section 6.3;
i=1;
while simulating do
Update geometry using x’;
Broad-phase collision check, Section 6.4;
Remove inactive constraints;
Compute system dynamics, Appendices C and D;
while Non-linear solution not correct do
while Linear solution not correct do
Compute new approximation v, Chapter 5;
Update geometry using x'*! = x! + Atv;
Detect degenerate cases, add constraints, Section 6.6;
Perform collision detection, add constraints, Sections 6.2 and 6.5;

Check for missed candidate collisions, Section 6.5.3;

Update constraints, Section 6.7.2;

if No constraints updated or candidates added then
L Handle slid off contacts, Section 6.7.3;

i=i+1;

that are stored in the list. A candidate pair stores for both associated features their begin and
current configuration. Each time the solver converges, a new approximation of the velocity
is obtained, which is used to update the geometry, and the current states of features stored in
each pair. Next, a fine collision check is performed on the updated pairs. This collision check
is typically performed a few times per time-step. Finally, when a candidate pair detects an
intersection of both features, a constraint is initialized and added to the solver. The candidate
pair keeps track of the constraint and is responsible for keeping the constraint in sync with
the geometry. The method described in this chapter can be summarized as in Algorithm 7.

This chapter is organized as follows: First, the geometric primitives used for intersection tests
are described. For each type, a description of the intersection test is given. Next, the collision
detection framework is described, starting with the broad-phase collision detection, followed
by the finer collision tests using the intersection tests described earlier. Special attention is also
given to handling degenerate cases. Finally, an approach for dealing with non-linear motion
is given.

6.2 Primitives

Detecting collisions between parts of the geometry can be done by computing the signed dis-
tance between features in a vertex-face or edge-edge pair. However, the signed distance alone
does not provide enough information to determine whether the associated geometry is col-
liding or not. It can be shown that in a number of cases, the signed distance is negative, but
the associated geometry is not colliding or a collision can not be determined, see Figure 6.2.
The main problem occurs when the geometry can significantly deform such that it (locally)
inverts. When the inversion is resolved in a later time-step, there will be a false detection of
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Figure 6.2: Example of a wrongly-detected collision. A vertex x, internally crosses the surface from behind. This
collision is usually not detected and an inversion is created (x;). When the inversion is being resolved by, e.g.,
the elasticity of the material, the same vertex now crosses the same surface from the front. This event is usually
detected as a collision and a response is computed that prevents the vertex crossing the surface. As a result, the
geometry got stuck in the red inverted geometry (xz).

a collision. However, the sign changes from positive to negative, so it can be considered as a
collision, but this collision will eventually prevent the geometry to recover from the inversion,
see Figure 6.2. To prevent this, no inversions of the geometry are allowed. To do this, internal
collisions must be detected and treated as normal collisions. Furthermore, false collisions must
be identified correctly such that they can be ignored.

A better criterion for detecting a collision is when the volumes associated with features in a
pair have an intersected volume. The properties of this intersected volume provides information
about the type of intersection and thus how objects are colliding. The problem here is that
vertices and edges do not necessarily define a volume. Faces or triangles define an infinitely-
large volume that can be used directly. So, both vertices and edges need to be enriched such
that they represent volumes. These enriched vertices and edges we call geometric primitives.
These primitives must be able distinguish between front-face or back-face intersections, i.e.,
normal and internal collisions, and should correctly deal with temporally-inverted geometries.

6.2.1 Intersection Definition

As mentioned before, a better approach for detecting collisions is to detect the geometric in-
tersection between two surfaces using their underlying volume. When two closed volumes are
intersecting, then the intersected volume is bounded by parts of the surfaces of both volumes,
see Figure 6.3a. Each point inside this intersected volume also lies inside both volumes. The
vertices and faces of the objects that are involved in the intersection, are also part of the bound-
ary of the intersected volume. Apart from normal intersections, also internal intersections can
occur in which a part of the surface penetrates another part of the same surface internally,
see Figure 6.3b. Here the intersected volume lies ‘inside’ the cube. Since the vertex causing
the internal collision now lies outside that volume, it is not part of the intersected volume.
Therefore, this intersection is not detected using the previously-described conditions. Since
this vertex lies outside the volume of the object, the geometry must be negated in order to
detect such intersections using the same definitions.

Internal intersections  To do so, an additional internal geometry is defined with the surface
normals pointing inwards. This negated surface can only intersect with itself, not with internal
surfaces of other objects and not with all other outer surfaces of all objects. Furthermore,
this additional internal geometry is only needed for deformable objects. Since rigid bodies do
not deform, internal collisions cannot occur. When an internal intersection occurs, the outer
geometry has the same but inverted configuration, but the geometry of this intersected volume
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(a) Intersecting volumes. The part of the volume that (b) Internal intersection. The green sub-surface inter-
is shared by both volumes (the intersection) is sects the blue sub-surface from behind. The inter-
bounded by the surfaces of both volumes. sected volume is not bounded by the vertex caus-

ing the internal intersection since it lies outside the
volume of the object.

Figure 6.3: Definition of an intersection. Left: two volumes have an intersected volume that is bounded by both
surfaces of both volumes. Right: an internal intersection in which the intersected volume is not bounded by all
features involved.

is not bounded by both involved features, thus the internal intersection is detected, while the
same intersection for the outer surface is discarded. Figure 6.3b has an intersected volume
that is bounded by the blue face, but is not bounded by the vertex causing the intersection.
Therefore, this intersection is not valid.

To detect intersections properly, a few primitives are developed that can detect intersections
that have a bounded intersected volume. This allows us to distinguish between normal and
internal intersections and collisions and treat them as such. In the following subsections each
primitive is described and the definition of a valid intersection is given.

6.2.2 Face

A face, or triangle, defines a local boundary between the internal volume of an object and
its exterior. Since faces have a strict definition of inside and outside, no special treatment is
required for faces. Per face, a normal vector is stored.

6.2.3 Edge

An edge is a region where two faces meet. Since an edge does not represent a surface, it is
undefined how an edge can distinguish between the interior and exterior of a surface. Since
two faces meet at an edge, information about both faces can be encoded into an edge. To do
this, two additional tangent vectors t; and t; are stored which are perpendicular to the edge
and point to one of the two non-referenced vertices of the adjacent faces. Furthermore, two
normal vectors n; and n, are stored which are the face normals of the two adjacent faces, see
Figure 6.4. Given this information, an internal plane is defined that lies inside the volume and
in between both adjacent faces. This plane is used in the actual intersection tests.
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(a) Convex edge. (b) Concave edge.

Figure 6.4: Edge primitive. Left: a convex edge. Right: a concave edge. Each edge is enriched using the two adjacent
face normals n; and n3, and the two adjacent tangent vectors t; and t; which point from the edge to the adjacent
vertices. Given the additional information, an infinite half-plane (red) can be defined that lies inside the object and
lies exactly between the two faces.

Edge convexity Assuming a non-degenerate edge, each edge can be either convex or con-
cave. When the two adjacent faces form a convex region, i.e, when

(t; my < 0) A (t - 1y < 0) (6.1)

holds, the edge is said to be convex (Figure 6.4a). In all other cases the edge is concave (Fig-
ure 6.4b).

Edge-edge intersections Two edges can only intersect if both edges are convex. If one
of them is concave, then the intersected volume is not bounded and thus infinitely large, see
Figure 6.5. Furthermore, in such cases some vertices of the edges will have an intersection with
the adjacent faces of the other edge in the test. When both edges are convex, then the actual
intersection test can be performed. Two edges do intersect if each edge intersects both adjacent
faces of the other edge. In this case a closed intersected volume is created. However, this test
might become unreliable when both adjacent faces of an edge are almost co-planar. To deal
with this, an additional intersection test is performed with the interior half-plane of the other
edge. This half-plane lies in the interior region of the edge and lies exactly in between both
adjacent faces, the red planes in Figure 6.4. When both edges intersect the interior half-plane
of the other edge in the test, and at least one adjacent face, then both edges are intersecting. A
strict closed volume is only obtained when both adjacent faces of both edges are intersected,
but in practice it is sufficient to weaken this such that an intersection is valid when one of the
adjacent faces and the internal face are intersected by the other edge. Please note that this
test does not take the actual size of the edge into account, nor the size of the half-plane. Only
infinitely large planes and edges are tested.

In order to deal with numerical errors in the computation of the intersection, additional tests
must be performed in case no intersection is detected while both edges are convex. By placing
small cylinders around the edges with a radius equal to the desired tolerance, additional inter-
section tests are performed with the edges and the cylinders. If both edge-cylinder intersection
tests detect an intersection, then both edges are intersecting, since both edges are convex.

Edge-edge signed distance  Given the definition of two intersecting edges, their signed dis-
tance can be computed. When two edges intersect, their distance must be negative. When
two edges are not intersecting, we leave their sign undefined. If we simply give a positive
sign to non-intersecting edges, then there might be a sudden change in the sign when the
signed distance is evaluated in the root-finder. It might be possible that along the paths of two
edges, their configurations change slightly and violate the definition of an intersection, thus
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(a) A line (green) intersects a convex edge by inter- (b) Aline (green) intersects a concave edge by only in-
secting both adjacent faces and the internal half- tersecting the internal half-plane.
plane.

(c) Both convex edges intersect the other edge. The (d) A convex (green) and a concave (blue) edge do
intersected volume is clearly bounded by the local not intersect their internal half-plane. There ex-
geometry. ists however two infinitely-large intersected vol-

umes that are not bounded by the local geome-
try. If both edges intersect the half-plane of the
other edge, the intersected volume still remains
unbounded.

(e) Both concave edges do not intersect the other con- (f) Both concave edges do not intersect the other con-
cave edge, but do intersect the half-plane (red) of cave edge, they do not intersect the half-plane
the other edge. There exists however an infinitely (red) of the other edge. There exists an infinitely
large intersected volume that is not bounded by large intersected volume that is not bounded by
the local geometry. the local geometry. The volume that is visible in

the center coincides with the outside region of both
edges. If also a negated internal geometry is de-
fined, this case would result in an intersection in the
negated internal geometry.

Figure 6.5: Convex (a) and concave (b) edge intersections with an infinite line (green). Figures (c) - (f) show various
test cases in which two edges are tested. Only (c) is defined as an intersection of two edges.

a sudden change from a negative to a positive signed distance is detected, which disturbs the
root-finding process. The root-finder will probably find the configuration between the inter-
secting and non-intersecting states, but the corresponding edge-edge distance is far from zero.
However, we are only interested in the location where this distance is zero. To work around
this, intersecting edges must have a negative signed distance. When the root-finder searches
for an intersection of the paths, the signed distances of each in-between configuration is com-
puted using a reference vector and a vector between both projections of each edge on the other
edge. When both edges cross each other, the dot product between the reference vector and
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the vector between the projection, changes sign. By computing the sign of the signed distance
as such, the signed distance function has a smooth behavior and a root-finder is now able to
correctly find the location and time of impact of both edges. This reference vector can only be
computed when edges are intersecting. When edges are not intersecting, but have intersected
previously, this reference vector is realigned at each begin of a time-step.

Edge collapse The geometry can invert between its initial and current configuration. When
this happens at a local scale, edges can collapse. An edge is collapsed when there is a transition
between the initial and current configuration in which the adjacent faces switch side relative
to the interior half-plane between the two adjacent faces. This also implies that a vertex of an
adjacent face collides with the other adjacent face. Whenever an edge is collapsed, it can not
be used in edge-edge intersection tests because the volume associated with the geometry is
inverted. Furthermore, such an edge has been changed from convex to concave or vice versa.
Hence, the definition of an intersection does not hold in these situations, so it will lead to
wrongly-detected intersections. To recover these edges, additional vertex-face constraints are
placed between both adjacent faces, if not already present due to other detected collisions.
When these collisions are resolved, the corresponding edge is in a non-collapsed state, so it
can be used in following edge-edge intersection tests.

6.2.4 Vertex

A vertex represents a single point in the geometry which can be efficiently used together
with a plane to determine the signed distance. As long as the involved surfaces cannot invert,
like for rigid bodies, or the features do not completely move through objects in one time-
step, this approach is sufficient in order to test for collisions. When the model can potentially
invert, or features can completely move through objects in one time-step, it is possible that
a vertex crosses a face from behind. When this is not correctly handled, the same vertex
will cross the same or another face from the front in a later time-step. This is then detected
as an undesired collision event. Instead of using the signed distance of a vertex-face pair, a
geometric intersection test must be defined, similar to the edge-edge case. To do so, each
vertex is enriched with information about all edges and faces connected to the vertex and
per edge, one edge normal is stored. The enriched vertex now describes a volume and so an
intersection with a plane can be defined. Figure 6.6 shows such an enriched vertex, with p the
actual vertex with its adjacent faces, n; their face-normals, e; the edges between the faces and
n.; the edge normals.

Vertex-face intersection  Like the edge-edge case, vertex p intersects a plane when the in-
tersected volume is bounded by the plane and all faces connected to vertex p. Since the vertex
has multiple faces connected to it, it is not possible to make a distinction between a convex or
concave state of the vertex. Some parts of the surrounding faces can be convex, while other
parts can be concave. To test if the vertex is potentially intersected by the plane, first the signed
distance of vertex p and the plane is tested. If the signed distance is positive, then no intersec-
tion is possible. If the signed distance is negative, then all edge vectors e; are inspected. If all
edge vectors e; have a positive dot product with plane normal n, then all faces connected to
p are intersected by the face. If also the volume bounded by the faces associated with vertex
p is positive, then the face and vertex are intersecting. This is similar to the convex condition
used for edges. In Figure 6.7 we show all eight possible combinations and the definition of an
intersection when all faces are intersected by the plane.
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Figure 6.6: A vertex p with its associated volume spanned by connected vertices p1, p2, p3. The surface of this
volume is described by 3 faces with face normals n;, nz, n;. Between the connected vertices and vertex p, edge
vectors ey, ez, e; are found. On these edges, edge normals n.1, ne2, nes are defined, which are the average of their
adjacent face normals. The volume of the vertex is intersected by the gray plane with normal n, which corresponds
with Figure 6.7b. In practice the volume is spanned by more vertices and can have arbitrary shapes, which can
potentially self-intersect.

It is straight-forward to see in Figure 6.7 when a vertex is intersected by a face. If the intersected
volume lies in the interior of both volumes, then the intersection is valid. However, it is possible
that the volume represented by vertex p does not have a nice convex shape. In practice it is
possible that this volume is very flat or consists of multiple layers of faces. In this case it is
difficult to measure the sign of the volume properly. Alternatively, this problem can be seen
as a visibility problem.

If a volume defined by a set of faces is intersected by a plane, and if the surface of the volume
is facing the surface of the plane, then the intersection is valid. To test for this, the face of
the volume closest to the intersecting face must be found. The closest face can be found by
selecting edge vector e; that has the smallest dot product with plane normal n. If this dot
product is negative, then the intersected volume is not bounded, so the intersection is not
valid. Due to this, the dot product for a valid intersection is positive, so the edge with the
smallest dot product must be the closest to the intersecting plane. Assuming that the volume
is free from self intersections, no other face of the volume is located between the selected edge
and the intersecting plane. Next, if the dot product of the edge normal n,; and plane normal
n is negative, then the intersecting plane and the edge e; are facing each other. Hence, if the
closest edge e; is visible from the plane and all edges are intersected by the plane, then the
intersection is valid.

This test only gives satisfactory results if the edges are not collapsed or when there are no self-
intersections of the volume. If the closest edge e; had been collapsed, then its corresponding
edge normal was negated. When this normal is tested for visibility with the plane, the result
is invalid. Therefore, vertices that have a volume that contains collapsed edges or has self-
intersections, are excluded from the intersection tests until the volume is recovered properly.

Vertex collapse  The intersection of a vertex with a plane can only be valid when the volume
associated with the vertex is free from self-intersections. If there are self-intersections in this
volume, then there is no guarantee that the intersection test is performed correctly. When self-
intersections are detected, the intersection test is not performed until the volume is recovered.
To detect a self-intersection of the volume, an intersection-test must be performed between the
faces and vertices associated with the volume. If a vertex crosses an opposite or neighboring
face, then there is a self-intersection. Although this test can be performed explicitly, since all
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(a) No intersection: Negative signed distance, (b) Intersection: Negative signed distance, all
all faces intersected, no facing normals. faces intersected, facing normals.

(c) No intersection: Positive signed distance, all (d) Nointersection: Positive signed distance, all
faces intersected, facing normals. faces intersected, no facing normals.

»

(e) No intersection: Positive signed distance, (f) No intersection: Positive signed distance,
not all faces intersected, no facing normals. not all faces intersected, facing normals.

(g) No intersection: Negative signed distance, (h) No intersection: Negative signed distance,
not all faces intersected, facing normals. not all faces intersected, no facing normals.

Figure 6.7: All eight possible vertex-face cases shown using simplified 2D cross-sections. The vertex (green) lies on
the surface of a volume (red). The face represents another volume (blue). All vectors represent the local surface
normals. Fig. b shows the only valid cases for an intersection between a vertex and face. Here the intersected
volume is bounded by both involved features. Fig. c is a valid back-face collision, which is obtained by negating all
normals in case b.
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required information is already available, each vertex-face and edge-edge pair in the volume
also exist as a pair in the candidate lists. By querying these pairs for sign-changes (vertex-
face) or edge collapses, this test can be performed efficiently. Once all self-intersections of the
volume are resolved, the vertex-face pair is automatically included in following intersection
tests.

6.3 Initialization

In order to perform all intersection tests, all data structures need to be initialized. First an axis
aligned hierarchical bounding volume needs to be created. This is done using a bottom-up
approach in which the leaf nodes of a binary tree are created, see [187, 188]. Each leaf-node
stores one triangle from the surface of a model, one axis aligned bounding volume containing
the triangle and one extended bounding volume containing both the triangle and its displaced
instance. Next, sub-patches are created by combining two adjacent sub-patches stored in nodes
at the same level of the tree. The newly created sub-patch is then stored in a node at one level
higher in the tree, and has the two individual nodes as its children. The selection of which
two adjacent sub-patches need to be merged, is determined using a greedy algorithm. By
measuring the average area and circumference of all possible combinations of sub-patches, the
combination is chosen that maximizes the area / circumference ratio. This forces the process to
create patches that have a coherent shape, which is favorable when testing for intersections.
This process is continued until all sub-patches are merged at all levels, such that they are
eventually represented by one node, the root of the object. Next, for each sub-patch in each
node of the tree a bounding box is computed given the size of the sub-patch stored at that
node. Eventually, each bounding box is a sub-volume of the bounding box of its parent node.
The bounding box that is computed at the root, is a representation of the size of the stored
geometry of the whole object. After each sub-tree for each individual object is created, all
sub-trees are merged in a similar way such that a tree is created containing all triangles in
the scene. Figure 6.8 shows a visualization of patches with their bounding volumes stored at
different levels in the tree.

Next, for each face, edge and vertex in the scene, empty candidate lists are created. Each
(empty) candidate list stores the initial, and current configuration of the feature associated with
the list. Here initial configuration means the configuration at the beginning of the time-step
and the current configuration is the configuration obtained after a computing an approximate
velocity. Eventually the current configuration becomes the initial configuration for the next
time-step.

6.4 Broad-Phase Collision Detection

Given the initialized bounding volume hierarchy, first an additional set of bounding volumes
is initialized. Given the current velocities of each vertex in the triangular mesh, an approxima-
tion of the displacement can be made. By multiplying the displacement of a particular vertex
by some constant and adding a small offset, a larger bounding box is obtained, the extended
bounding box, which also contains the approximated displaced feature. Next, all extended
bounding volumes at each level of the tree are updated using the extended bounding boxes of
their children.
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Figure 6.8: Visualizations of different levels of the BVH. Each sub-patch has one (random) color and one bounding
box assigned. The levels of the visualized BVH are, O, 4, 8 and 12.

For each face in the scene, a broad-phase collision check is performed using the extended BVH.
Given the extended bounding volume of the associated face, all leaf nodes in the extended BVH
are selected by traversing the tree while their extended bounding boxes intersect. Once this
tree traversal reaches leaf-nodes for which their extended bounding boxes intersect with the
extended bounding box of the queried face, the face associated with that node is added to the
list of candidates for the queried face.

Please note that for a particular face, all its neighboring faces are found using this test. This
is in general considered as a waste of computational resources since the chance that a triangle
intersects its neighboring faces, is in general very small. When the underlying object is rigid,
this is not even possible. However, for highly deformable objects, this is actually possible and
happens frequently. Therefore, neighboring faces for which the bounding boxes do intersect
are included in the candidate lists.

Once all face-face candidate pairs are found, unique vertex-face and edge-edge candidate pairs
are extracted. For each pair, a new candidate is created (or updated) and stored in the corre-
sponding candidate lists. Each candidate stores the initial (at the beginning of the time-step),
current (end of the time-step) and intermediate configuration of the face, vertex and edges at
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the moment of impact (if a collision is detected). Once a new approximate velocity is computed,
the current configuration of each vertex, face and edges are updated. After the candidates are
updated, they are tested for possible intersections. When a new time-step starts, the initial
configurations are set given the last current configuration. The new current configuration is
updated later after a new approximate velocity is obtained.

6.5 Intersection Tests

Once all candidate lists are populated with their candidates, the actual intersection tests are
performed for each pair described by a candidate. First, at the begin of the time-step, all cur-
rently known primitives are updated given the new state of the geometry. By assuming that
the previous time-step resulted in a collision-free state, the initial state of the current time-step
is also free from collisions and collapsed edges. Next, the new state of the system is obtained by
solving the constrained dynamics problem. Once a new state is obtained, the current config-
urations of the primitives are updated. Given the new current configurations of all candidate
pairs, intersection tests are performed by finding roots in their signed distance function.

6.5.1 Root Finding

Given the initial configuration at the beginning of the time-step and the current configuration
given the new state of the geometry, a finer check is performed for each pair by finding roots in
the signed distance function. Using the root-finding method described in Section 6.7.1, the time
and configurations at impact can be found, if exists. If the root is found, additional checks are
performed on the obtained configurations from the root-finder. First, their distance should be
zero. Second, the computed intersection point must lie on the triangle or edges. If this point
lies outside the geometry defined by the primitives, then the pair does not intersect and is
not considered until the next intersection test. If the intersection point is on both primitives,
then a constraint is initialized using the configuration at the obtained root. Last, also the
obtained configuration must be a ‘valid’ intersection. However, since the root finder has found
a configuration for which the distances are zero, there will be no formal intersection. However,
for both edges and triangles it is important that features are not degenerate, have not too small
edges, and the area of the triangle must not be too small.

6.5.2 Additional Intersection Tests

After solving the constrained problem, a new configuration for the current set of pairs is ob-
tained. It is possible that new intersections happen due to deformations of surfaces. By per-
forming a new collision check, these collisions will be found and new constraints are added to
the system. This process is continued until no pairs are found that have a real intersection.

6.5.3 Missing Collision Test

At the beginning of each time-step, a broad-phase collision check is performed by traversing
the BVH. This step adds new candidates to the candidate lists if the corresponding geome-
try is likely to collide. This test is performed using axis-aligned bounding volume tests in
which the extended bounding volumes of two features are tested against each other. When
at this point the bounding volumes of the features of a pair are not intersecting, the pair is
not added to the candidate list and no finer collision checks are performed during the current
time-step. However, since this test is performed using an approximated velocity at the be-
ginning of the time-step, it is possible that the final velocity is significantly different than the
initial approximated velocity. Therefore it is possible that at the end of the time-step, collisions
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are missed since the corresponding candidate pairs were not present in the candidate lists. If
these candidates are added in the following time-step, then the geometry can be intersecting
at the beginning of the next time-step. Due to this, no new collision can be detected for that
candidate, resulting in an undesired interpenetration that cannot be resolved.

To ensure that at the end of the time-step all candidate lists do contain all potential candi-
dates, we could perform an expensive second broad-phase collision check. Alternatively, each
current configuration of each face in the geometry can be tested against the extended bound-
ing volume used to populate the candidate lists. If a face had been moved out of its extended
bounding volume, then there could be a potential collision missed. By identifying all vertices,
edges and faces that have moved out of their extended bounding boxes, and updating their
bounding volumes in the BVH, all missed potential collisions can be found. Given their up-
dated extended bounding volumes, the updated BVH is tested against these identified faces.
If new potential collisions are found, the corresponding candidate lists are updated using the
new candidates. Eventually, finer collision checks are performed. Contrary, if no new candi-
dates are found, no collisions are missed and the method can continue. This test is performed
every time constraints are updated. If all features remain in their extended bounding volume,
no additional steps are required.

6.5.4 Treatment for Internal Collisions

In general, each surface of a deformable object can have self-intersections. In principle, these
kind of intersections are no different than any other intersection between two different de-
formable objects. However, if the underlying tetrahedral mesh can potentially invert, then
another kind of self-intersection is possible. In these situations it is possible that the surface in-
tersects itself from the inside. If these internal collisions are not resolved, then the mesh could
invert. However, thanks to the primitives described earlier, no collision is detected when the
inversion is being resolved. Such a collision is detected when only signed distances are con-
sidered which could potentially result in the creation of conflicting constraints and could thus
result in an unsolvable system.

In order to deal with these internal collisions, intersections of the internal geometry must be
detected separately from the outer geometry. To do so, additional candidate lists are created
for each vertex and edge that are part of the internal geometry. Next, when a face-face pair
in the BVH is likely to intersect and both faces belong to the same internal surface, also their
back-face versions are used to create the vertex-face and edge-edge candidates for the internal
geometry and are stored in the associated candidate lists. By using this additional internal
geometry, the intersection test is performed exactly as done for the outer surface. Since the
candidate pairs in the inner and outer surface are mutually exclusive with respect to inter-
sections, it is not possible that for a particular pair both the inner and outer surface detects
an intersection at the same location. However, to guarantee this, the geometry must be free
from degenerate cases. If degenerate cases are found, they must be actively resolved first. If
this is not guaranteed, then the surface can become in a state in which intersections cannot
be detected properly. Furthermore, since the outer and inner surfaces are separated, outer
surfaces cannot intersect with inner surfaces. This removes the possibility of the detection of
false collisions.
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6.6 Degeneracies

While testing the geometry for intersections, a number of degenerate cases can be encoun-
tered. Edges can become parallel to other edges of faces, or the distances between edges and
vertices in a triangle can become too small, resulting in too small edges or too small areas of
triangles. Here we describe how to handle these situations.

Parallel edges When edges become parallel, the edge is also parallel to the half-plane be-
tween the two tangent faces of the edge (Figure 6.4). In this case, no intersection is detected,
so the pair is automatically neglected in intersection tests. This is in general not a problem,
since the endpoints of the edges could have an intersection with the adjacent faces of the other
edge. So possible intersection are resolved by the vertex-face primitives.

Edge-Vertex In order to guarantee a mesh with no zero-sized edges and triangles, additional
constraints are used to constrain the distance between each edge of a triangle and its opposite
vertex. If this distance becomes too small, the area of the triangle also becomes very small
and / or edges become too short. In these cases the orientation of the triangle may change
significantly while the change in position of a vertex is small. This makes it difficult to compute
a good collision response.

To detect that a vertex moves too close to an opposite edge, a plane is used with a normal that
coincides with the vector perpendicular to the initial edge and pointing to the initial opposite
vertex, see Figure 6.9. If the distance measured with respect to this plane drops below the
desired tolerance, a root-finding procedure is started in order to find the intersection of the
path of the vertex and the cylinder around the edge. Within this procedure the actual signed-
distance function is used which could have more than one root. If multiple roots are found,
the closest to the initial configuration is selected since it represents a crossing from a positive
to a negative signed distance. Given the obtained configuration at the root, a friction-less
constraint is initialized which is treated like any other constraint, including possible updates
due to a changed geometry. As long as the degeneracy is not resolved properly, the face, edges
and vertices involved are not used in other intersection tests.

Exact edge-edge intersections Two edges have an exact edge-edge intersection if their
signed distance is exactly zero (or smaller than a certain epsilon threshold). The signed distance
of the intersecting pair should be negative, but if their distance is exactly zero, the correction
using the reference vector cannot be performed since either way the result is always zero.
If the reference vector can not be determined properly, we cannot compute the sign of the
signed distance. To correctly determine the direction of the reference vector, copies of both
edges are displaced in the opposite direction of the average face normals and tangent vectors,
i.e., assuming that the edge is convex, this average vector is obtained by:

Z=n;+n; —t; —t. (62)

If the edge is flat, the normal vectors cancel out, if the adjacent faces are co-planar, the tangent
vectors cancel out. Hence, it is always possible to compute a displacement direction. Given
vector z, the vertices of the edge are displaced in the negative direction of z. This needs to
be done for both edges for both computed directions of z. After this separation is performed,
the signed distance can be computed again, which should be positive. If the computed signed
distance is negative, the reference vector is negated. The obtained reference vector is then
used to re-compute the initial and current distance.
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Figure 6.9: Intersection of vertex x with an edge e. This image show the cross-section of a triangle with an edge e
and its opposite vertex x. If the path between the initial configuration x, and x; crosses plane fi, an intersection
test is performed between the cylinder around the edge and the path of the vertex. If an intersection is detected, a
constraint is added which prevents the vertex to move closer in the direction of the edge. This approach guarantees
a minimum distance between edges and vertices, and so between vertices in the same triangle.

Complete edge degeneracy resolution  To correctly perform the intersection tests and the
creation of constraints, it is very important to perform the intersection tests only when the as-
sociated geometry is not degenerate. To do so, the resolution of the degeneracies is prioritized
as follows:

1 Enforce a minimum distance between all edges and vertices within one triangle.
2 Enforce constraints on collapsed edges.

3 Resolve self intersections in volumes associated with vertices.

4 Resolve regular intersections.

For case 1 and 2, additional constraints are used that enforce a minimum distance or resolve
the collapsed state. Case 3 is resolved by enforcing case 2 and regular collisions between the
involved features, case 4. Once all these cases are resolved, the associated features are included
in the regular intersection tests. While resolving the degeneracies it is important to first resolve
case 1, then 2 followed by 3. For example, if the volume associated with a vertex consists of
collapsed edges and the minimum distance is not respected, the minimum distances need to
be enforced. Once the minimum distances are enforced, collapsed edges must be resolved.
After that, we can add additional constraints, due to regular collision detection, to resolve self
intersections for the volume associated with the edge. If this ordering is not respected, then it
is possible that a state is obtained for which no solution exists.
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6.7 Non-Linear Motion

The method described so far assumes a ‘nearly’ linear motion of the primitives. In practice, the
motions of these primitives are determined by the motion of the objects, the contact responses
due to collisions and deformations due to contact. All these aspects contribute to a non-linear
motion of the primitives which affects the detection of collisions, the computed responses of
the collisions and the state of the objects.

To correctly handle non-linear motions, first a collision between two features with a non-linear
motion must be properly detected. Second, due to deformations, the initially computed loca-
tions of contact points between colliding primitives will change due to deformations, friction
and other collisions. Also the associated contact normal changes accordingly. These changes
must be taken into account. Finally, a contact point associated with a collision between two
features can slide to neighboring parts of the surface. If these cases are not correctly handled,
collisions can be missed, resulting in interpenetrations or large gaps between two surfaces in
‘contact’. In the following subsections we describe each aspect in detail.

6.7.1 Non-Linear Collision Detection

Assuming a simulation with discrete time-steps, a collision occurs when the signed distance
between two primitives changes from positive to negative. If such a change happens some-
where in a time-step, a time and configuration exists in which the signed distance must be
zero. Depending on the configurations of the involved features at this intermediate time, the
features are about to collide.

This approach works well when small time-steps are used or when the motion is nearly linear.
For larger time-steps, the motion of the involved primitives may be non-linear. For exam-
ple, vertices at the surface of a deformable body can have a linear motion, but the motion of
triangles and edges can be non-linear. A triangle can deform and rotate due to linear vertex
velocities. If another vertex crosses this rotating face in the same time-step, the signed dis-
tance for this pair can be positive in the beginning of the time-step, and again positive at the
end of the time-step. Thus, detecting collisions based solely on the signed distances at the
beginning and end of the time-step may result in missed collisions. In order to detected this
kind of collisions, a more sophisticated root-finding method must be used.

Root-finding  Given the distance function of the example above, there are multiple possible
scenarios. There is no zero (or root) between the beginning and end of the time-step, or the
function has a multiple of two zeros. In such cases, the derivatives of the distance function in
the beginning and end of the time-step have opposite signs, as shown in Figure 6.10. In the first
part of the time-step the vertex moves towards the face, in the second part, the vertex moves
away from the face, while the face rotates in between. Using this additional information, one
can easily determine if there is a potential root in this time-step.

Assuming that the distance function behaves smoothly during the time-step, a minimum of the
distance function occurs when its derivative is zero. Since the derivatives in the beginning and
end of the time-step have different signs, the derivative must be zero somewhere in between,
which coincides with the minimum of the distance function. By finding the root of the deriva-
tive distance function, also this minimum is found. If at this minimum the signed distance
has a different sign compared to that in the beginning of the time-step, two intervals exist
with each one root. In this case, we are interested in the first root, since the derivative in the
first segment is negative, indicating that the distance decreases. Using a bounded root-finding
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Figure 6.10: Distance function d() (blue) evaluated at ¢ in one time-step. The distance function is positive at the
beginning (¢ = 0) and at the end (¢ = 1) of the time-step. Its derivative d’(z) (red) is negative at ¢ = 0 and positive
at ¢ = 1, which implies a minimum or maximum of the distance function within the interval of the time-step. This
minimum can be found using a root-finder and is located at ¢ = 0.5 (green). At this minimum, the distance function
is negative. This implies that a root exists between ¢ = 0 and ¢ = 0.5. Another root exists between ¢ = 0.5 and
t = 1. Since we are interested in the root in the first interval, performing a root-finding method between ¢ = 0 and
t = 0.5 will give the time and configurations at impact.

method like the Brent-Dekker method [145], in combination with a distance function that has
different signs in the beginning and end of the interval, a root is guaranteed to be found. Con-
trary, if the minimum of the distance function has the same sign as the distance function in
the beginning of the time-step, then there is likely no intersection. The vertex moves close to
the face, but does not intersect. However, at this stage, this cannot be guaranteed since also
the derivative can have multiple roots within the interval.

Many roots, many extrema Depending on the time-step size and the type of simulations
involved, the distance function, and its derivative, can have multiple roots and extrema within
the interval described by the time-step. For example, when candidate pairs contain features
associated with (articulated) rigid bodies, their motion can be very non-linear and the distance
function may contain multiple roots and/or extrema. According to the Intermediate Value The-
orem, a continuous function that has different signs at the start and end of such interval, must
have at least one root somewhere in this interval. When the Brent-Dekker method is used,
the function values in the beginning and end of the interval of interest must be different in
sign. If satisfied, then a root within this interval is found. However, it remains unknown
if the function contains other roots within the same interval. To find other potential roots,
one could sub-divide the interval in smaller sub-intervals and perform a root-finding on those
sub-intervals as described in the previous paragraph and Figure 6.10. However, there is no
guarantee that an arbitrary root is a good candidate for sub-dividing the interval.

A better approach would be using a root-finding method that does not require different signs
of the function value at the boundaries of the interval. Usually such methods are also not
bracketed, meaning that they can converge to any root, which could be outside the interval
of interest. For example, Muller’s method [145] is such a method and does not require a good
approximation of the initial guess. Please note that this method requires complex arithmetic.
Once a root has been found, a root deflation technique is used to remove the root from the
original function, i.e.,

for = fx)o/(x = xo), (6.3)
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with f(x), the original function, xq the first root found and f(x); the deflated function. Now
the next root, if exists, can be found in the same way as described above. This deflation process
continues until no new (real) roots are found. However, care must be taken. Due to the addi-
tion of approximated roots containing rounding errors, also the roots of the deflated function
are affected by these errors. One way to reduce this error is to polish the obtained roots by
performing a root-find method on the original function where the starting point is set to the
root. Usually a few iterations are sufficient. Once all roots are obtained, the root is selected for
which a real geometric collision happens. If there are multiple valid configurations, the first
one is used.

Edge-edge roots When searching for a root of an edge-edge pair distance function, one
must be careful. If at both the beginning and end of the time-step the edge-edge pair has no
intersection, we cannot determine the sign of the signed distance correctly. This can only be
done if the pair is intersecting. When a multiple of two roots are found, the configuration of the
edge-edge pair needs to be inspected in between the found roots. If one of them is intersecting,
then the reference vector can be computed and used to correct the other distances. If no edges
are intersecting at the selected points, then there is most likely no intersection. When the
signed distance has only one root in the interval, either the beginning or current configuration
of the edge-pair is intersecting, for which we know that the signed distance must be negative.

6.7.2 Constraint Updates

Once the additional intersection tests do not find any new intersections, the state of the current
pairs that have a constraint defined should be further inspected. Given the description of the
constrained problem, see Equation (5.11), it is immediately clear that at convergence J;vy.; >
c; hold, with J; and ¢; obtained from the geometry in the beginning of the time-step. However,
for active constraints,

Ji+1Vier — e # Jivier — ¢ = Ci(vig) = 0, (6.4)

implies that it is possible that the constraint configuration does not agree with the current
state of the geometry. This is visible as too large gaps or interpenetrations between objects.
Additionally, a contact point could have slid off an edge or face (the constraint is active where
it should not be).

In order to determine that the current state of the geometry is correct, all signed distances of the
geometric pairs having a constraint enabled are inspected. If each signed distance is positive
and within the desired tolerance, the current configurations of all constraints are correct with
respect to the geometry, except that contact points could have slid off a face or edge, which
is discussed later. If at least one of the constraints does not agree with the geometry, then all
constraints are updated given the current configuration of the geometry. To justify the update
of constraints, let us recall Newton’s method, i.e.,

RACH)

frex)’
applied to the problem described in Equation (5.11), Appendix B.1.2 and Appendix B.1.5. Con-
sidering only equality constraints, this yields the following procedure:

GG TG D) e

—— ——
Vi yi o)™ fyn

X4 =X (6.5)
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in which f’(y;)™! f(y;) is solved using some iterative method, see Chapter 5, and [ indicating
the Newton iteration number. When performing Newton’s method, f(y;) and f’(y;) are lin-
earized at y;, meaning that before using f’(y;)™! and f(y;), all constraints C(y;) are linearized
given the state of the geometry at y;, which is then stored in the system by updating J and c.
Since in general Equation (6.4) applies for the updated constraints, f(y;) # 0 and a new step
towards the solution of the non-linear problem is performed. As long Equation (6.4) holds,
a new Newton step is performed. When all constraints agree with the geometry, f(y) = 0,
implying that a non-linear solution is found.

It is known that Newton’s method converges slowly or diverges if the current update on y does
not improve f(y). Since only constraints C(y) are updated, the update of these constraints
should be done in a ‘smooth’ way. In our case, we choose to update each constraint using a
linear combination of the configurations used for initializing or updating the constraint, and
the current configuration of the geometry, i.e.,

Cl1(V141) = wCia(y141) + (1 = w)Ci(y0), (6.7)

with 0 < w < 1aweight such that the change in the contact normal between C;, | and C; is less

than, say, 15 degrees, Cy11(y;+1) the current configuration of the edge-edge or vertex-face pair
given the current positions y;,; obtained by linearizing the constraint after the last Newton
step. Ci(y;) represents the previous configuration of the constraint in the previous Newton
step, and consequently C; (y;+1) is the new interpolated configuration of the pairs, which are

I+1
used to update the current set of constraints.

To put this in the context of the method described in Chapter 5, f(y) equals the negative
residual vector. Each iteration of Algorithm 4 improves y. When the residual drops below
a certain tolerance f(y) =~ 0. At this point, constraints are updated as described before. By
recomputing the residual vector, the solver now improves y given the new configuration of
the constraints, based on the previous solution of y. Since the solver already performs y;; =
yi — f'(y1) 1 f(y;) in one of the search directions, there is no need to explicitly perform the
Newton procedure as shown in Equation (6.6), i.e., the update of y;,; based on y; is already
performed implicitly. Alternatively, Equation (6.6) can be rearranged as

v A JT\ b
(3. =00 o) (2 6

S —
friyn™?

which implies that after solving the problem, constraints need to be re-linearized. Performing
afew ‘Newton iterations’ by updating constraints and solving the newly obtained constrained
optimization problem, the constraints will eventually match the state of the geometry. Further-
more, the distances between primitives with active constraints are guaranteed to be positive
and less than the desired tolerance. If this update step is not performed, it is possible that after
solving the constrained problem, the geometry still has interpenetration or too large gaps, as
shown by Equation (6.4). Once a collision-free state is obtained, all constraints associated with
contact-points that have slid off a face or vertex, need to be inspected further.

Please note that when contact points are sliding over the surface, one must take the already
slid distance into account when updating the constraint. When a constraint is updated, the
distance between the initial and current configuration is updated, and stored in c. However,
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this allows the solver to freely move the contact point to that location and start the friction
computation from there. This basically releases the already computed friction forces, which
is not desired. To keep friction consistent after a constraint update, the initial tangential-
distances with respect to the initial configuration are used, but need to be aligned with the
updated geometry. This prevents a sudden release of (kinetic) friction forces.

6.7.3 Sliding Contacts

Another type of constraint update is required when two surfaces are sliding over each other.
In those cases it is possible that a contact-point slides off a face or edge to a neighboring face
or edge. In these cases the constraint should be transferred to its neighboring face or edge.
In most cases it is sufficient to just disable such constraint, but this strategy does not always
result in a collision-free state, as we will describe here.

When a vertex slides off a face we have to distinguish two cases. The vertex crosses a convex
or concave edge, see Figure 6.11. When a convex edge is crossed, the vertex in the beginning
of the time-step lies behind the neighboring face. Once it crosses the edge, its distance be-
comes positive. When the original constraint is disabled, the vertex can potentially cross the
neighboring face again, its signed distance then changes from positive to negative. In such
a case, the root-finder will not find a root along that path because both the start and current
configuration of the path lie behind the face. To handle those situations, we have to update the
beginning configuration of the vertex such that it lies outside the first face (but on its plane),
but also above the neighboring face. When the old constraint is disabled, the vertex now can
cross the neighboring face. Since the start configuration now has a positive signed distance
and the path clearly intersects the face, a collision is eventually detected and a constraint is
enabled, see Figure 6.11b.

When the vertex crosses a concave edge, the vertex already crosses its neighboring face. Al-
though it seems counter intuitive, such collisions are not always detected properly. When the
vertex slides over the face, its signed distance will be positive with respect to the face. When
it crosses a concave edge, the neighboring face detects a sign change from positive to negative
for the vertex. Using a root-finder, the actual configuration at impact can be found. However, if
the signed distance function is non-linear, then the root-finder might give unexpected results.
For example, if the faces and vertex are in motion, the motion of the vertex relative to the faces
will not be a straight line. The curved path of the vertex can intersect the neighboring face at
a different location than expected. For example, the path of the vertex between the start and
current configuration can intersect the neighboring face just outside the face. When such an
intersection is found, it is discarded, because the intersection with the current face is reported,
see Figure 6.11a. This in turn results in a non-detected collision with the neighboring face. To
handle this case robustly, it is sufficient to enable the constraint between the neighboring face
and the vertex once the vertex crosses the edge, without explicitly checking for a collision.

The same procedure applies to edge-edge cases. When two connected neighboring edges form
a convex region the same procedure is followed as in the vertex-face case. The start config-
uration of the slid off edge is updated such that a collision with the neighboring edge can be
properly detected. For concave regions, it is sufficient to enable a constraint for the neighbor-
ing edge-edge pair without detecting a collision explicitly.
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(a) Concave transition: The signed distance of vertex

%o with face f; is initially positive and negative when
the vertex has slid off face f; (x;). The intersection
at the intermediate position (green) will not be de-
tected in all cases. Itis possible that the non-linear
path results in a collision elsewhere (red). There-
fore, a new constraint between the vertex and face
f2 is explicitly enabled.

6.8 Conclusion

(b) Convex transition: The signed distance of vertex

%o with face f; isinitially negative and positive when
the vertex slides off face f; (x1). After updating the
initial configuration at the crossed edge (green xj),
the initial signed distance becomes positive. Later,
after disabling the constraint between face f; and
the vertex, the vertex now can move towards the
second face and an intersection is detected (green)
(x}). The red paths show possible trajectories of

the vertex without updating the initial configura-
tion. None would be detected as a potential colli-
sion with face f2.

Figure 6.11: Sliding contacts. A vertex slides off a face. Depending on the convexity of the crossed edge, either a
constraint is explicitly enabled (a), or a possible collision is enforced by updating the initial position (b).

The procedure for sliding contacts can be summarized as follows:
1 Assure that all constraints are resolved correctly.

2 Update all beginning configurations of each pair using the current configurations, only
if the current configurations are not intersecting and have a positive signed distance.

3 Disable the original constraint if the contact crosses a convex region.

4 Enable a constraint for the neighboring pair once the contact crosses a concave region
(if not already activated)

6.8 Conclusion

The method described in this chapter allows us to correctly detect collisions involving de-
formable models. The difficulty with deformable models is that the geometry can (locally)
invert, the collision response changes the contact configuration and the geometry can change
significantly within one time-step. If an accurate collision response for deformable models is
required, these aspects should be taken into account.
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6.8 Conclusion

Given these observations, finding all collisions in a correct way is a challenging task. Using
a standard vertex-face collision detection based on signed distances usually gives reasonable
results, but cannot guarantee a collision-free state because edge-edge contacts are missing.
In order to include proper edge-edge contacts, their signed distances must be computed in a
robust way. Thanks to our approach we are able to correctly compute signed distances and
inijtialize constraints. Challenging cases, like inversions or objects that are flat, are correctly
detected and handled. Additionally, the non-linear problem is solved by updating constraints
a few times per time-step, which allows us to obtain a truly collision-free state at convergence.
This guarantees a correct detection of collisions in later simulation steps. As demonstrated,
this coincides with Newton’s method for solving systems of non-linear equations.

6.8.1 Limitations

Although we have designed this approach to handle extreme deformations, there are a few
drawbacks.

« When the method tests for intersections, not all intersections are immediately found.
Due to the strict criteria of intersections, some cases are detected after collisions of
neighboring geometry are resolved first. For example, an intersection of two concave
edges is not detected, but is resolved by neighboring vertex-face constraints. As a re-
sult, a few iterations of collision detection on the candidate pairs, followed by a solve,
is required before all collisions are found. A less strict definition of intersections would
help here, but will cause problems in other situations.

« If large time-steps are used, also the displacement Atv increases. Due to this, also the
extended bounding boxes, described in Section 6.4, can become too large. Each feature
in the mesh has such an extended box which is used in the actual broad-phase collision
detection step. As aresult, one face could have a large number of potential collisions with
other faces, while only a few matter. This results in the creation of many candidate pairs
in the candidate lists, which could result in a large memory consumption. This can be
reduced by decreasing the extension of the extended bounding boxes, i.e., reducing 3Atv
to something smaller. However, reducing it may result in missed potential collisions, see
Section 6.5.3.

144









Conclusions



Conclusions !

7.1 Conclusions

7.1 Conclusions

In the previous chapters we presented the individual parts of deformable and rigid-body
simulations, partially performed on GPUs. This research contains a study on how to store
sparse matrices on GPUs while maximizing the efficiency of Sparse-Matrix Vector Multiplica-
tions (SpMVs) and methods using these operations. That is, we analyzed their performance and
presented a model for estimating it given some properties of the problem. Next we have used
this machinery to perform a FEM simulation of deformable bodies in real-time using GPUs. We
have introduced a novel method for simulating deformable and rigid bodies coupled through
contact and friction in an accurate way. Finally we developed some tools for performing reli-
able collision detection between (deformable) objects, involving large deformations.

In the following paragraphs the conclusions of each individual chapter are given, followed by
a general discussion on other possible applications of the obtained results. Next we reflect
upon our work followed by a general discussion on future research directions.

Conjugate Gradient method on GPUs  In Chapter 3 we have investigated a number of map-
pings for block-based SpMV operations on GPUs, using CUDA. Block row mapping maps one
complete block row (a row containing a number of N X N matrix blocks) to one thread block.
This method is straightforward to implement, but not very efficient, since a lot of computa-
tional resources are wasted. Within this mapping one thread block processes a large number
of matrix blocks. By transposing the block row mapping, the multiple block-row mapping is
obtained. This mapping assigns multiple block rows to one thread block, so that it processes
a large number of matrix blocks, which belong to different block rows. This has positive im-
plications on the performance, i.e., less thread blocks are needed and the amount of wasted
computational resources is decreased. Furthermore, since each thread block processes a larger
number of matrix blocks, better memory throughput was obtained and thus a better perfor-
mance. This is in general only the case if N > 4. If N < 4 the data must be reordered to obtain
efficient (coalesced) memory transactions for loading the matrix blocks. This block reordering
significantly improves the performance of the SpMV operation for matrices stored using the
BCSR layout with blocks of size N < 4, if the MBR mapping is used. Sorting the block rows
such that block rows with similar lengths are processed by the same thread block, significantly
increases performance.

By mapping the computations differently on the GPU, and by applying row sorting and block
reordering, the best performances for the SpMV operation were obtained. Experimental results
showed that our SpMV mapping outperforms existing methods in most cases, and performs
close to the limits of the hardware. Our optimized SpMV operation was used to accelerate the
CG method, given one or multiple GPUs. Together with the optimized vector operations, this
makes (in most cases) our CG mapping about five times faster than existing methods.

We have also provided a recipe for estimating the maximum achievable performance and the
average performance of a (parallel) CG method, given the properties of the problem. This
method can be applied to similar numerical algorithms. Analyzing the memory throughput
revealed a clear trend between the number of memory transactions and the performance. This
analysis has been done for each kernel performing vector operations, as well as for the SpMV
kernel. The resulting trends were modeled by a particular Sigmoid function, which was then
used to estimate the memory throughput of each individual operation appearing in the CG
method. Finally, this led to an approximation of the maximum or average performance of the
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method. We further extended our performance-estimation framework such that also multiple
GPU setups can be modeled. The results showed that our performance estimates were very
close to the measured performance, and in general, the estimates became more accurate when
larger blocks were used.

Chapter 3 mainly focused on performing the Conjugate Gradient method on GPUs since it
is a widely used method in simulations of, e.g., elastically deformable models and simula-
tions based on FEM. However, the same machinery can be applied to implement many related
Krylov solvers on GPUs, like the Conjugate Residual method used in Chapter 5, as well as
other numerical methods that heavily rely on a fast Sparse-Matrix Vector Multiplication. Fur-
thermore, the analysis method can be applied to different memory-bound problems, can be
used to identify bottlenecks in methods and to reason about the maximum reachable speed or
data throughput for certain algorithms.

Deformable models on GPUs  In Chapter 4 we have presented an efficient method for sim-
ulating elastically deformable models for graphics applications, accelerated on modern GPUs
using CUDA. Our method relies on a fast Conjugate Gradient solver and an efficient mapping
of the SPMV operation on modern GPUs presented in Chapter 3. Since the topology of the
underlying grid does not change during the simulation, data structures are reused for higher
efficiency. To further improve performance, we proposed a scheme which allows to efficiently
update the sparse matrix, during the simulation.

The method performs all necessary computations on the GPU, which completely eliminates
the need for transferring data from/to CPU memory. This strategy therefore maximizes the
performance of such simulations when GPUs are involved.

Although we mainly focused on the simulation of elastically deformable models on GPUs, this
research can be applied to many types of FEM-based simulations. In general the strategy for
many FEM simulations is very similar. They all compute some local quantities per element,
these are then assembled into a large system, which are then solved using a particular numeri-
cal method. As shown in the results, the computation of the local quantities is very fast because
in general no additional information from neighboring elements is required. This information
is propagated by assembling and solving the large system. We have demonstrated how linear
elements can be applied, but also other types of elements with higher order interpolation or
test functions can be used.

Efficient and Accurate collision handling In Chapter 5 a novel method is presented for sim-
ulating coupled deformable- and rigid-body simulations through contact and friction. Contact
and friction are modeled using KKT multipliers (Appendix B.1.3), and additional friction forces.
Where friction is usually linearized using a discretization of Coulomb’s friction cone, usually
an n-faceted pyramid, we model kinetic friction using an additional friction force that is aligned
with the sliding velocity. This property ensures a maximum dissipation of energy and accu-
racy of the computed friction. Instead of solving the KKT problem by converting it to a Linear
Complementarity Problem (LCP) and solving this using a Projected Gauss-Seidel method, we
solve the underlying Mixed Linear Complementarity Problem (MLCP) directly through a Con-
jugate Residual (CR) method. The problem with the LCP approach is that it requires the inverse
of the stiffness matrix of the simulated bodies. For rigid bodies this inverse can be computed
instantly, for deformable bodies the computation of the inverse is computationally intensive.
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7.2 Reflection

We have compared a number of methods that are capable of solving the contact problem when
deformable objects are involved. The compared methods usually (partially) decouple the com-
putation of the dynamics of the simulated objects, contact response and friction response.
Some methods perform a splitting of the stiffness matrix, resulting in a more computationally
efficient construction of the approximated LCP. Other methods rely on a Cholesky factoriza-
tion of the stiffness matrix in order to compute the inverse. Among the compared methods
we found that the level of coupling between non-penetration and friction constraints signif-
icantly influences the efficiency of the methods. The tighter this coupling, the more efficient
the method becomes. The method described in Chapter 5 enforces this tight coupling by up-
dating constraint states and friction forces while searching for an optimum. As demonstrated,
the CR method is capable of solving such problems, but in an unpreconditioned setting, the
method becomes very inefficient due to a very slow convergence. To overcome this, a precon-
ditioner was introduced that significantly improved the performance of the CR method applied
to constrained optimization problems.

Since the problem is solved in its MLCP form, a relinearization of the constraints does not
require a re-computation of an intermediate matrix, e.g., the LCP matrix or Delassus opera-
tor. Thanks to this, the non-linear contact problem can be solved efficiently, which improves
accuracy and stability.

The method presented in Chapter 5 is not limited to contact mechanics alone, but can be
applied to other problems involving (in)equality constraints and in which the system matrix is
Symmetric and Positive Definite. Non-linear problems can also be solved efficiently with this
method since it does not require to recompute intermediate matrices after the re-linearization
of the problem. Similar problems can be for instance found in economics, physics or electrical
engineering.

Collision detection for deformable models The method described in Chapter 6 allows us
to correctly detect collisions involving deformable models, as used in Chapter 5. The diffi-
culty with deformable models is that the geometry can (locally) invert, the collision response
changes the contact configuration and the geometry can change significantly within one time-
step. If an accurate collision response for deformable models is required, these aspects should
be all taken into account.

Given these observations, finding all collisions in a correct way is a challenging task. Using
a standard vertex-face collision detection based on signed distances usually gives reasonable
results, but cannot guarantee a collision-free state because edge-edge contacts are missing.
In order to include proper edge-edge contacts, their signed distances must be computed in a
robust way. Thanks to our approach we are able to correctly compute signed distances and
initialize constraints. Challenging cases, like inversions or objects that are flat, are correctly
detected and handled. Additionally, the non-linear problem is solved by updating constraints
a few times per time-step, which allows us to obtain a truly collision-free state at convergence.
This guarantees a correct detection of collisions in later simulation steps. As demonstrated,
this coincides with Newton’s method for solving systems of non-linear equations.

7.2 Reflection

In this section we reflect upon our work to see how our work contributed to answering the
research question. In Chapter 1 we divided the research question in four parts, see Figure 1.2.
Here we discuss how the presented methods answers our research question.
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« Parallel acceleration: How can we accelerate both numerical methods and simulation
methods such that we can solve/simulate large problems in a short amount of time us-
ing parallel hardware?

Parallel hardware and especially modern GPUs have a quite different architecture com-
pared to traditional CPU architectures. Typically, a GPU contains many ‘simple’ pro-
cessors, able to perform operations in a Single Instruction Multiple Data approach. One
instruction is typically executed by many processors and each processor works on a
specific part of the data. In order to maximize the performance for certain numerical
methods, the processors need a steady stream of data from memory. The key in opti-
mizing the performance on GPUs is by streaming the data to the processors in a partic-
ular pattern, such that each processor immediately can start computing, instead of first
collecting and/or reordering its data. This can be achieved by mapping the computa-
tions on the available processors in a specific way, which implicitly reorders the data in
memory such that the maximum data throughput-rate can be approached. In Chapter 3
we showed the relation between the performance and memory throughput, and used
this principle to maximize the performance of linear algebra operations performed on
sparse matrices and vectors, leading to a GPU implementation of the Conjugate Gradi-
ent method. Additionally, the same methodology was used in Chapter 4 — performing a
FEM simulation solely on a GPU.

Performance analysis: How can we provide tools for reasoning about the efficiency of (nu-
merical) methods performed on parallel hardware?

Given the answers from the previous question, one can ask the question: what is the
maximum performance one could obtain for certain problems and how efficient is this?
Given the observations from the previous question, a model was made that modeled the
maximum memory throughput for a certain problem size. Since the memory through-
put and the performance are closely related in memory-bound problems, we were able
to estimate this theoretical peak-performance given the problem-size. This model was
extended to also model the communication between GPUs, which visualizes Amdahl’s
law. When a certain problem is solved using multiple GPUs, each GPU needs to commu-
nicate its results to the other GPUs. Additionally, since each sub-problem was smaller
than its original problem, each GPU also performed less efficient. This demonstrated that
achieving a good scalability of numerical methods performed on GPUs is not straight-
forward.

Computational efficiency: How can we simulate coupled simulations in an efficient way?
Coupled simulations couple the motion of one object to the motion of another object.
Usually such a coupling is modeled through penalty forces, which are not 100% collision
free. The use of Lagrangian / KKT Multipliers results in an accurate coupling, which
is able to resolve interpenetrations. When solving such constrained problems, the in-
termediate Linear Complementarity Problem is usually too computationally-intensive to
obtain. Instead of solving the problem through this LCP, the underlying MLCP is effi-
ciently solved, as described in Chapter 5. Additionally, by actively switching the state
of inequality constraints, the method converges faster.
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7.2 Reflection

« Accuracy and stability: How can we increase the accuracy and stability of (coupled) sim-
ulations?
Simulations of rigid and deformable bodies can become unstable. For example, stacking
rigid objects is still a difficult problem. The source of this problem originates from con-
tact and friction constraints that are not resolved properly. This could potentially add
new energy to the system, resulting in oscillations and non-physical motions. Addition-
ally, when object are colliding, these collisions must be detected properly. Collisions
may trigger or invalidate other collisions. In Chapter 6 we have developed a method
for correctly detecting collisions when deformable objects are involved. Furthermore,
thanks to the efficiency of the method described in Chapter 5, we are able to solve the ac-
tual non-linear problem, which guarantees a collision free state at the end of a time-step
is obtained and consequently the system reaches a true equilibrium. Another important
aspect of our approach is the treatment of kinetic friction, which is modeled as a con-
tinuous force that is always aligned with the motion of the objects in contact. All these
aspects contribute to both accuracy and stability.

7.2.1 Reusability and Further Integration

The methods described in each chapter can be reused in other applications. Chapter 3 delivers
a stand-alone Conjugate Gradient solver that can be executed on multiple GPUs. Although we
have focused on the CG method, it is straightforward to use the building blocks for implement-
ing other related Numerical Methods. The most important part here is the storage scheme of
sparse matrices and the SpMV operation, and the parallelization among multiple GPUs. The
corresponding method for performance analysis could be applied to similar memory-bound
problems, since the analysis method tries to model a theoretical memory throughput. There-
fore this can also be used for identifying bottlenecks in computations on GPUs. Chapter 4
provides a stand-alone GPU based simulation of FEM based deformable models and uses the
building blocks described in Chapter 3. Since all operations on the individual elements in
the tetrahedral mesh are performed on a GPU, these operations can also be applied to other
problems. Chapter 5 provides a numerical method for solving optimization problems involving
(in)equality constraints and can be used to solve various problems. The method mainly focused
on solving contact and friction in an accurate way. However, when less accurate collision re-
sponses are sufficient, then a less accurate version of this method could be used in interactive
settings. For example, by replacing the collision detection method by a simpler and less accu-
rate method, one could apply constraint-based contact in real-time. When combined with the
building blocks from Chapter 3 and the FEM simulation of Chapter 4, a real-time simulation of
deformable and rigid-bodies in contact is possible. Chapter 6 describes a method for detecting
collisions involving deformable objects. This method is combined with the numerical method
described in Chapter 5 and could be combined with other methods requiring collision detec-
tion. In fact, this method is used in combination with the methods from Chapter 5 to perform
a comparison that demonstrates its reusability and integration in existing methods.

Further integration  The current chapters can be further integrated by performing the com-
plete simulation pipeline on GPUs. Chapters 3 and 4 only have this pipeline partially im-
plemented on GPUs. By integrating Chapters 3 and 4, and a GPU version of Chapter 6 into
Chapter 5, a fast and accurate simulation of deformable and rigid bodies in contact would be
possible, which could have many applications, ranging from games, VR to haptics applications,
see, e.g., [112, 186].
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Otherapplications  The machinery presented in this dissertation can also be applied to other
subdisciplines within computer graphics. For example, the rendering method Radiosity [51]
could benefit from a fast GPU method for solving large linear systems. Furthermore, many
problems found in computer graphics use optimization methods for finding the optimal solu-
tion of a certain problem. In many cases a large linear system is obtained, possibly in com-
bination with Lagrange multipliers. Such problems are typically found in the fabrication and
design of particular objects or systems that have to fulfill a number of constraints on the shape
or other physical properties. Many of these methods could benefit from our work.

7.3 Looking Forward

After concluding and reflecting on our work, we have to look forward and consider interesting
research directions. In the previous section we have described how we can combine the differ-
ent methods described in this dissertation. In this section we like to describe a few directions
for future research in general.

Accelerating Numerical Methods We have implemented methods for accelerating Numer-
ical Methods using GPUs and identified the bottlenecks in a few methods and operations. In
many methods, Sparse-Matrix Vector Multiplications form a certain bottleneck on GPUs due
to the memory latencies and difficulties in order to saturate the memory bus. If the memory
bus was saturated, then the maximum performance obtained was significantly less than the
peak-performance of such devices. For example, the Nvidia GeForce GTX280 GPU used in
those experiments had a theoretical peak-performance of 933 GFlops and a memory through-
put of 141 GB/s. For the SpMV operation we were able to obtain a maximum performance
less than 34 GFlops. The current generation Nvidia GeForce RTX280 GPU has a theoretical
peak-performance of 8920 GFlops and a memory throughput of 448 GB/s. Although the peak-
performance is an order of magnitude larger, the memory throughput only increased slightly
more than three times. For memory-bound problems this means that modern GPUs are even
less efficient compared to older GPUs, by only looking at these numbers. Furthermore, a sim-
ilar trend is observed in the development of CPUs. The clock-frequencies used in CPUs are
reaching a limit. Making CPUs faster by increasing the clock frequency alone is therefore
very difficult. Instead, modern CPUs are currently small parallel computers having multiple
smaller processors used for numerical operations. Additionally, such CPUs in combination
with GPUs are used in large grids in which, ideally, each processor works on solving the same
large problem. This raises basically two questions: How can we use the full potential of current
generation GPUs and CPUs for accelerating Numerical Methods? and Can we design/use other
non memory-bound numerical methods for solving systems?

Computational efficiency and accuracy We have investigated efficient methods for solv-
ing contact problems by eliminating the need for computing and solving the intermediate
problems. We have demonstrated this for deformable bodies based on FEM. Although this ap-
proach is significantly faster than existing methods, we have not tested this with other types
of simulations. Especially simulations with a large system matrix could potentially benefit
from such methods. Furthermore, knowing that we can solve non-linearly-coupled systems
in an efficient way, this potentially opens the possibility for simulating other complex non-
linearly-coupled phenomena, involving large systems. Furthermore, it is interesting to solve
the non-linearity also for the underlying object simulations. In the work presented in this
dissertation, these simulations were linearized only once per time-step. Within physics based
animation methods found in Computer Graphics, particle based methods in combination with
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7.3 Looking Forward

constraints (Position Based Dynamics) are receiving much attention, as well as hybrid meth-
ods like the Material Point Method (MPM) that is used to simulate various phenomena. These
methods could potentially benefit from our methods. Especially when MPM is coupled with
other kinds of simulations, they could potentially benefit from our research. The accuracy of
this coupling or transfer between both simulations is of key importance to obtain accurate
enough final results. Apart from using existing methods found in physics based animation,
investigating new simulation methods that maximize the efficiency on parallel architectures
in general is an interesting direction of research.

Furthermore, one major improvement of the performance in the constrained optimization
method was obtained through the presented preconditioner. Although the performance in-
crease was significant, we believe that clever preconditioning schemes may improve the per-
formance of such methods even further.
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A1 Introduction

A.1 Introduction

he Full preconditioner described in Chapter 5 works well, in general, but can introduce
T large errors in some cases. This is not directly caused by the numerical properties of the
individual systems, but merely by the numerical properties of the corresponding Schur com-
plement matrix or LCP matrix. When an MLCP is converted to an LCP, this Schur complement
matrix is computed and appears in the solution of the problem, see Equation (B.13). It is known
that Schur complement matrix will have a bad conditioning when multiple (more or less) iden-
tical rows appear in J. When this happens, numerical methods will have difficulties in solving
the corresponding linear system for the unknown multipliers. This happens when a particular
collision creates a few nearly identical constraints, e.g., when a vertex intersects a face close to
one of its vertices. Such an event will likely create intersections of the edges connected to the
involved vertices. In this case, a vertex-face constraint is created and added to the system, and
so will constraints for neighboring intersecting edges. All constraints created by this event
are very similar and almost identical. When all constraints are added to J, the Schur com-
plement matrix JA™'J7 will have a bad conditioning or will even become singular in case J
becomes rank deficient. Such a system can be inverted using a Singular Value Decomposition,
as shown in [196], but can introduce large errors in subsequent computations. The singularity
can be described by a few contact forces for which an infinite number of solutions exist, but
only the sum of all contact forces is applied via JTA. So, each solution A of Equation (B.13) is
valid. Fortunately, the method in Chapter 5 does not compute or solve such a Schur comple-
ment matrix, and will properly converge even if J contains duplicates, since it actually solves
a Least-Squares problem.

When two deformable bodies collide, the involved constraints act on the velocities of a few
vertices of both models. If one collision results in duplicate constraints, the amount of dupli-
cate constraints is relatively low. This is because a collision only generates (close to) duplicate
constraints if a vertex collides with a face close to one of the vertices of the face. When both
objects are rigid bodies, the amount of duplicate constraints can become much larger. A con-
straint on a rigid body directly acts on its linear and angular velocities, i.e., all constraints
acting on the same rigid body share the same entries in A. Collisions that are close to each
other, create very similar constraints for rigid bodies, despite the fact that different vertices in
the model are involved. The duplicity in this case is not bounded, but scales with the amount of
constraints created between the two rigid objects. The finer the meshes used for both models,
the more constraints are created that act on the same entries in A.

A.2 Rank Deficiency in Preconditioner

The method described in Chapter 5, does, in principle, not have problems when J contains
duplicates. However, the used preconditioner relies on an approximation of the block-inverse
of the system matrix B, see Equation (5.11). This block-inverse contains the inverted Schur
complement matrix, see Equation (5.22). Due to this, the preconditioned CR method will fail if
the preconditioner uses a singular matrix. Fortunately, a diagonal approximation of this Schur
complement matrix is used which is not singular, see Equation (A.1). Due to this, we are only
left with a scaling error in the preconditioner, as we will show in this section.
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To illustrate the problem, we use a small example that shows the error in the preconditioner
when J is rank deficient. In our example we set A to the identity matrix, J = (1, 1) and compute
the preconditioner matrix as

A;l _AQIJTSQIJAgl (S;IJA;I)T
-17A-1 -1
S;JA; -s;

B!~ (A1)

We start with the inverse of the Schur complement matrix: S;l = (JA;IJT)‘I, ie.,

(o)) - w2

Next, S;'JA7! is computed, resulting in (3, 3). Using this result A;'J7S7'JAZ! is computed
and becomes: (

Now the final form of the preconditioner is computed using Equation (A.1), resulting in:

). e

N= D=
D= D=

NI [Dol= D=
NI [N]= D=

1
2
1
2
1
2

which is also the exact inverse of the described system. Similarly, the preconditioner can be
obtained for the case with a duplicate constraint, i.e., J now contains two identical rows. Using
the same procedure as before, the preconditioner now becomes:

1 1

0 -1} 3 3

-1 0 1 1
— f 2 (A.5)

3 2|72 O

1 1 1

z 2| 0 —3

Please note that S becomes singular in this case, but its diagonal approximation S, is invertible.
The preconditioner in Equation (A.5) is different compared to the one in Equation (A.4), espe-
cially the values in the upper-left block show a large deviation. When two identical constraints
appear in J, the total contribution is divided over both individual constraints. So in the case
of two duplicates, their corresponding response force should be divided over the constraints
such that the net force stays the same. This also suggests that the effect of the preconditioner
on the rest of the problem should be invariant for the number of duplicates, i.e., the upper-
left block should not change in this case. This becomes clear when duplicated constraints are
removed by adding them together, i.e., J now becomes (2, 2). Using the same procedure, the
approximate preconditioner can be computed for this system, i.e.,

(A.6)

YIS AN N

1
2
1
2
1
4
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A.3 Similarity Measurement

The upper-left-block is now exactly the same as in Equation (A.4), which confirms that the
upper-left block should not depend on the amount of duplicate constraints. By adding dupli-
cate constraints together, the upper-left-block is restored. The other off-diagonal blocks are
scaled by the number of duplicates, while the lower-right block is scaled by the square of this
number. Since the right-hand-side of the involved constraints are also multiplied by two, the
computed result is exactly the same as in the non-duplicate case, except that the computed
multipliers for this system are divided by the number of duplicates. Since the scaled-down
multiplier is used with two ‘added’ constraints, the net result is exactly the same.

A.2.1 Preconditioner Scaling

In the previous section we have shown that in case of duplicate constraints the upper-left-
block of the preconditioner introduces a too large error. This can be compensated by adding
duplicate constraints together. However, adding constraints together is only possible when
two constraints are exactly the same. When they are similar, this procedure is not possible,
therefore we propose a technique that allows one to compute a good approximation of the
block-inverse as shown in Equation (A.1), when (near) duplicate constraints exist.

Similar to [180], we propose to distribute the ‘mass’ over the constraints. Instead of dividing
the entries in A used in the construction of S, we divide the entries S; by the number of similar
constraints Z for the involved constraints. The scaled instance of S, is also used in the other
terms appearing in the preconditioner. To illustrate this, we apply this procedure to the system
in which J contains a duplicate row. Since both constraints have a similarity of 2, each entry
on the diagonal of S, is scaled by this number, i.e., the scaled instance S;, becomes

G w

with Z a matrix containing for each constraint the number of similar constraints. Next, Sy, is
used to replace Sy, resulting in the following preconditioner:

1
SdZ=SdZ=((2)

D= O

W= = [ Ro= D=

NS NI I T[S NS

(A.8)

(=N E PN N T

e = N et

The upper-left block of the preconditioner is identical to the one in Equation (A.6). The other
blocks are scaled by the number of duplicates. Now, by adding the rows and columns corre-
sponding to duplicate constraints in J and J7, the obtained system becomes exactly the one
from Equation (A.4). This implies that scaling Sy by Z yields a system that behaves exactly
like the non-duplicate case, except that the magnitude of the multipliers are evenly distributed
among the duplicates, with the same net result. Using this strategy the unintended scaling of
the upper-left block in the preconditioner matrix is compensated by an additional matrix Z.

A.3 Similarity Measurement

In the previous section we have shown that scaling matrix S; with Z brings the precondi-
tioner matrix closer to the real inverse of the problem. In case of real duplicate constraints,
the scaling used is exactly the number of duplicates per constraint. However, a large number
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of similar constraints can be created during a collision event and originate from close-by in-
tersections. Many identical or similar constraints introduce an error in the upper-left block of
the preconditioner. To compensate for this, we can scale the corresponding entries in S; by Z
using a similarity measure of the constraints. In order to obtain this similarity measure for a
particular constraint, we have to distinguish between the type of constraints, i.e., constraints
between rigid-rigid, rigid-deformable and deformable-deformable objects. By maintaining a
map with all connections between individual constraints and their corresponding indices in
matrix A and J, a set T, is obtained for each constraint a, containing all constraints that have
at least one column in A in common.

A.3.1 Non-Penetration Constraints

In order to find similar constraints, let us first describe the constraints encountered in a simu-
lation. Two bodies have collided if the signed distance between any set of two surface points
is negative. Let x, € I} and x,, € I, these surface points. The (signed) distance dj between x,
and x, is computed using

Cr(%0,X%p) = (Xp = X,) -m =dj 2 0, (A.9)

with n the contact normal. Since Equation (5.11) solves for vi*!, Equation (A.9) is transformed
into a velocity constraint using a first-order approximation, i.e.,

. ocC,
CiHl =y + Ata—tk >0, (A.10)
which in matrix notation becomes:
aC, oC,
AR AR VO ) > —dy = o (A.11)
0x, 6Xp Vp

All instances of Equation (A.11) are stored as
Vit >e (A.12)

with J the Jacobian matrix.

Rigid-rigid contact Suppose x, is a point on a rigid body, which is defined as:
Xo = X¢,0 T To, (A.13)

with x. , the center of mass and r, a vector from x, , to point x, on the surface of the body.
The signed distance between two points o and p on the surface of the rigid-bodies is defined
as:

Cr(X0,Xp) = (Xc,p +Tp = Xc 0 = To) - 0. (A.14)

Similar to Equation (A.11), this constraint is transformed into a constraint on the velocity as:

0x, 0
9Ck %c.o + At 9Ck 9r, + At 9Ck Oxep + Az‘aﬂ ﬁ,
0Xc,0o Ot or, Ot 0xcp Ot dr, ot

Cil=Cr + At (A.15)

. 17} . . Ory, .
with ﬁ = wp X 1, for vector r, and w, its angular velocity. The term At%—i’:% is then

computed using:
0C al‘p T T
tEE = Atn” w, X1, = At(r, X 1) ). (A.16)
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The other term regarding r, is computed similarly. Given Equation (A.15), the velocity con-
straint in matrix format is given as:

Vo

@Wo

(—AtnT, —At(ro x n)T, AtnT, At(r, x n)T) > —dy = ¢y, (A.17)

Vp
@p

which is added to the system Jvi*! > c.

Deformable-deformable contact Similarly, the signed distance of a vertex-face pair be-
tween two deformable bodies is described using:

Cr(Xo,Xp) = (Xp — WaXo,a = WpXo,b — WeXo,c) * I, (A.18)

with x, a vertex of object p and x, a point on the surface triangle (a, b, ¢) of object o, with w
its barycentric coordinates. Similarly the velocity constraint is obtained, i.e.,

v
P
v
(AtnT, —Atwgn®, —Atwpn?, —AthnT) @4 > —dy = cx, (A.19)

Vo.b
Vo,c

with v the velocities of the involved vertices. Depending on the type of collision, face-vertex
or edge-edge combinations are created. In case of collisions between rigid and deformable
objects, the signed distance is defined exactly as in Equation (A.9), but either x, is regarded as
a point on the surface of the rigid-body, while x, is a point on the surface of the deformable
surface, or X, is a point on the deformable surface while x,, is a point on the rigid surface. Given
the origin of the points in contact, the derivation of the velocity constraint follows the same
procedure as described above, but treats deformable and rigid points differently. Furthermore,
in order to obtain the tangential friction constraints, the contact normal n is replaced by the
tangential vectors t; and t,, resulting in three constraints per contact-point.

A.3.2 Rigid-Rigid Constraints Scaling

A constraint between two rigid objects separates the objects at a certain location on both
surfaces. This location is the point of contact, which is the same for both objects. Since this
point of contact is not directly related to a vertex or face of the surface, a contact point is
expressed using the degrees of freedom for each object. In case of two colliding rigid bodies,
a large number of contact points can exist between the surfaces of the colliding objects. Each
contact point results in a constraint that is acting on the same linear and angular velocities of
both involved objects, i.e., all constraints described by Equation (A.17) have their entries at the
same columns of J.

Depending on the location of the contact point, vectors r, Xn, r, Xn and n can be different from
other constraints. To determine if two constraints are equal, the difference between vectors
that coincide with the same columns in J are subtracted from each other, i.e.,

dnb =Ng — Dy

Ipa X1g Tp,b X1y
drpb = - A
Irp,a X mall  lTp,5 X mp]| (A.20)
To,a X Ng To,p X 1Mp
dyop = -
Ito,a X ngll  |Ito,p X mp|
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where b indicates a ‘connected’ constraint stored in the set T,. Please note that Ipa X Ny can
be zero, hence normalizing those vectors should be done with care. Next, these distances are
used to compute the final similarity, i.e.,

Sa,b = (1 - ﬁdgbdnb)Jr (1 - A ’derbdrpb)+ (1 - ‘,dZobd“’b)Jr s (A.21)

with ()* truncating negative numbers to 0. When two constraints are identical, s, = 1.
Contrary, when constraints are different, s, , = 0 and are between 0 and 1 if they are similar.

A.3.3 Rigid-Deformable and Deformable-Deformable Constraints Scaling

When a rigid and deformable body collide, many contact points can be created between the
surfaces of both objects. Since constraints between the same rigid and deformable object have
the same columns in J for the rigid body, but may have different columns for the entries cor-
responding with the vertices of the deformable model, we need to find constraints in set T,
with the same column indices for the rigid body and at least one similar column index for
the deformable object. When the column indices for the rigid body are equal and at least one
vertex of the deformable object are similar for two constraints, there is a possibility that the
constraints are similar or identical. A similar approach is used for constraints describing a
contact involving two deformable models. Given the set T, of similar constraints, constraints
are selected that have for both parts in the constraint at least one column index in common.
Given such a pair, their similarity is computed. The following procedure computes this similar-
ity or constraint scaling and is the same for both rigid-deformable and deformable-deformable
constraints.

Given constraint a and b in set T,, the computed similarity should be 1 in case the constraints
are identical, 0 when they are orthogonal, and somewhere between 0 and 1 if constraints a
and b act on the same sub-set of vertices, but with different weights. By computing the sim-
ilarity for each constraint in set T,, the total number of similar constraints is approximated.
Since constraint a is also an element of T,, the computed similarity is always equal or larger
than one. Given constraints a and b, their barycentric weights corresponding to each vertex
in the deformable models can be extracted. After that, the absolute difference between each
barycentric coordinate corresponding to the same vertex in both constraint a and b is com-
puted. Subtracting this difference from 1 will give a weight of 1 if the weights are identical.
By multiplying these weights, the similarity between constraint a and b is computed, i.e.,

#w
Sa,b = 1_[ (1= wa,i = wp.il) - (A.22)
i=1
When all weights of both constraints are equal, this equation computes a similarity of 1 be-
tween constraint a and b. When the barycentric weights of both constraints are orthogonal, the
similarity is 0. In all other cases when the contact points described by both constraints share
a few vertices, the similarity lies between 0 and 1. When the constraints act between a rigid
and deformable body, the same procedure is followed, except that the entries corresponding
to the rigid body can be ignored. This reduces the number of weights to compare.

A.3.4 Total Scaling

Once all similarity values s, ; for each pair of constraints, are computed, the final scaling z,
for each constraint a is computed using z, = ), s, for all b € T,. Next z, is stored in Z at the
diagonal component of Z corresponding to constraint a.
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X3 X3

X5 Xs

X4

4
X X2 X1 X2

(a) Less similar case, s, 5, = 0.018 (b) Similar case, s, ; = 0.52

Figure A.1: A vertex-face and edge-edge constraint acting on the same subset of vertices. Vertex x is the intersection
point of the edges involved in the edge-edge constraint.

A.3.5 Examples

Figure A.1a shows an example in which a vertex-face constraint is active between vertex x4 and
face x;x,x3, and an edge-edge constraint between edge x2x3 and edge x4xs. The vertex-face
constraint has barycentric weights (0.8, 0.1, 0.1, —1) and the edge-edge constraint has barycen-
tric weights (0.5, 0.5, —0.5, —0.5). Given these weights and the corresponding indices, the sim-
ilarity is computed as follows:

(1-10.8 = 0[)x(1 = 0.1 - 0.5))%(1 = 0.1 = 0.5))x(1 — | = 1 = —0.5])x(1 — [0 — 0.5])=
(1-08  x(1-04) x(1-0.4) x(1-0.5) x(1-05) =

(0.2) x(0.6) x(0.6) x(0.5) x(0.5) _ (A23)
0.018.

Since x4 and x are relatively far from each other, the similarity is low. Figure A.1b shows a
similar configuration. The vertex-face constraint now has weights (0.1, 0.45, 0.45, —1) and the
edge-edge constraint (0.5, 0.5, —0.8, —0.2). The similarity is now computed as:

(1-10.1=0])x(1 —10.45 — 0.5)x(1 — [0.45 — 0.5)x(1 — | = 1 — —0.8])x(1 — |0 — 0.2|)=
(1-0.1) x(1 = 0.05) x(1 = 0.05) x(1-0.2) x(1-0.2) =
(0.9) %(0.95) %(0.95) %(0.8) %(0.8) =
0.52.

(A.24)

Since x and x4 are closer to each other, the similarity score is larger. By moving x4 towards x
eventually results in a score of 1. Please note that when a constraint has no weight defined for
a particular vertex, 0 is used to compute the difference. Furthermore, the total scaling Z is the
total sum of the similarity scores s, ; for all nearby constraints stored in set T,. Since this set
also contains constraint a, each computed similarity for a constraint is at least 1.

A.4 Conclusion

The method described in this appendix reduces the error in the preconditioner caused by du-
plicate or similar constraints. Without this correction, the upper-left block of the Full precon-
ditioner has a significant difference compared to cases in which no duplicate constraints exist.
Due to this error, the Preconditioned Conjugate Residual method will converge much slower
when many similar constraints are active between two rigid bodies. The same problem is ob-
served with similar constraints originating from rigid-deformable or deformable-deformable
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contacts, although the observed error is less prominent because most constraints act on dif-
ferent vertices. Due to this, the chance of creating constraints between the same degrees of
freedom is smaller, but still possible. With this correction we noted that the Preconditioned
Conjugate Residual method had no convergence difficulties in cases with many similar or du-
plicate constraints between the degrees of freedom. Although this approach worked well in
the cases we have observed, a thorough study should be performed on the computation of the
weights in Equations (A.21) and (A.22) and their effect on the convergence in different cases.
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B.1 Introduction

B.1 Introduction

athematical Optimization is a large and long studied topic in mathematics and spans al-
M most a century of research. Today many methods found in Computer Graphics and
Computer Science in general, heavily rely on some form of optimization. Without giving a
complete overview of optimization methods, we briefly introduce the methods closely related
to the chapters in this dissertation. For a broader overview of Mathematical Optimization we
refer to, e.g., [27, 127].

B.1.1 Unconstrained Optimization

In unconstrained optimization problems, a (global) minimum (or maximum) is searched, with-
out putting any conditions on the solution. For example, given an objective function f(x), the
goal is to find x such that f(x) is a minimum, i.e,

arg min f(x). (B.1)

Depending on the type of function f(x), different strategies are used to find minima. In general,
alocal minimum is found where the gradient Vy f(x) vanishes. When f(x) is a convex function,
then the local minimum is a global minimum.

B.1.2 Method of Lagrange Multipliers

Within optimization methods the goal is to minimize or maximize a certain function f(x) with
respect to the variables x. If the variables in x are constrained, Lagrange Multipliers can be used
to restrict the feasible variables in x. Strictly speaking, the method of Lagrange Multipliers only
allows equality constraints. A constrained minimization problem can be described as:

arg min f(x)
X (B.2)
subject to h(x) = 0,

with f(x) the cost or objective function and h(x) the set of equality constraints. Since the
equality constraints must evaluate to zero at the optimality, the minimization can be redefined
as

argmin £(x, A) = argmin f(x) + Z Aihi(x), (B.3)
X X i=1

with £L(x, A) the Lagrangian and A the vector with Lagrange multipliers. The minimum of the
Lagrangian is located where its gradient vanishes, i.e.,

ViL(x,A) = Vi f(x) + i AiVihi(x) = 0. (B.4)
i=1

Furthermore, the derivative with respect to the multipliers must also vanish, i.e.,

0 A
Val(x,A) = L) _ hi(x) = 0, (B.5)
0A;
for all constraints. Since x € R™, A € R" and Vif(x) € R™, h(x) € R”, there are m + n
equations with m + n unknowns, which implies that the problem is solvable. By solving both
Equations (B.4) and (B.5), an optimum will be found, assuming the problem is feasible.
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B.1.3 Karush Kuhn-Tucker Conditions

Karush-Kuhn-Tucker (KKT) conditions [106] are first order necessary conditions for a non-
linear programming solution to be optimal. These conditions generalize the method of La-
grange Multipliers since it also allows for inequality constraints. In general the problem that
is minimized (or maximized) is:

arg min f(x)
X (B.6)
Subject to g(x) < 0, h(x) = 0,

with g;(x) < 0 the inequality constraints in addition to the method of Lagrange Multipliers in
Equation (B.2). In a similar way this problem is transformed in the following minimization (or
maximization) problem, i.e.,

argmin f(x) + Z 1igi(x) + Z Ajhj(x), (B.7)
X i=1

Jj=1

with now both g and A the KKT multipliers. The minimum is located where the gradient
vanishes (or the gradient of the cost function is a linear combination of the gradients of g; and
hi), i.e.,

Vo f () + ) piVygi(®) + > 4 Vhy(x) = 0
i=1 j=1
> Vupigi(x) = g(x) < 0 (B.3)
i=1

Z VAihi(x) = h(x) = 0.
i=1

When a particular constraint g; < 0, it is contributing to the minimum in Equation (B.7).
By allowing multiplier y; to be zero, such constraints does not contribute to the minimum
of the problem. This is known also the complementarity slackness, which is p;¢;(x) = 0 for
all i. If all these necessary conditions are satisfied, there exist KKT multipliers that minimize
Equation (B.7). On top of these conditions, some regularity conditions can be imposed on the
constraints and at the cost function f(x). We refer to [27, 127] for a detailed overview of these
conditions.

B.1.4 Quadratic Programming

Quadratic Programming (QP) is a special case of the method of Lagrange Multipliers. When the
objective function f(x) in Equation (B.2) is a Quadratic function and the constraints g(x) are
linear, the problem is called a QP problem. If also the Hessian of f(x) is SPD, then the objective
function is also convex. This class of problems can be solved using, e.g., the Conjugate Residual
method.

B.1.5 Complementarity Problems

As mentioned previously, when inequality constraints are used, additional complementarity
conditions are imposed. This class of problems are often named complementarity problems. In
the following subsections we mention a few types of complementarity problems often found
in contact mechanics.
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(Mixed) Linear Complementarity Problems

The Mixed Linear Complementarity Problem (MLCP) [43] is a special class of the Karush-
Kuhn-Tucker conditions. As its name suggests, it is linear, meaning that the objective function
is quadratic and the constraints are linear, similar to QP problems but now with inequality
constraints. Given a convex quadratic function,

1
f(x) = EXTAX —x'b, (B.9)
a constrained minimization problem can be described as,

arg min f(x)
x (B.10)
Subject to g;(x) < 0.

The gradients of the functions are: V,f(x) = Ax — b and V,g(x) = J7, the Jacobian of g.
Furthermore, if g is a linear function, it can be rewritten using its Jacobian, i.e., g(x) = Jx — ¢,
with ¢ containing the constant terms in g. To get the gradients to zero, the following system

is solved: ,
os(‘;‘Jo)(j{)—(lc’)l(;)zo, (B.11)

which is known as a Mixed Linear Complementarity Problem (MLCP) and follows directly from
Equation (B.8), given the gradients of the objective and constraint functions. The predicate
mixed is due to the free vector x. The 1 in the right-most vector is used to make x free, but also
enforces that, due to the complementarity, 0 < Ax +J7A — b = 0 holds. MLCPs can be solved
using various projected QP solvers. When only equality constraints are used, the Conjugate
Residual method can be used. When also inequality constraints are used, the CR method can
be used in active-set methods. In Chapter 5 a method is presented that efficiently solves MLCPs
with both equality and inequality constraints, based on active constraint switching.

Linear Complementarity Problems
Linear Complementarity Problems (LCPs) [43] are a subset of Mixed Linear Complementarity
Problems. The difference between them is that LCPs do not have free variables, i.e., the vari-
ables are constrained such that 0 < x holds. Given the quadratic function in Equation (B.9),
an LCP can be described as:

0<xLAx-b>0. (B.12)

Such problems can be solved using Lemke’s algorithm [43] or using some projection based
method, e.g., Projected Gauss-Seidel. In the latter one, the values of x are clamped in each
iteration in order to satisfy 0 < x.

Conversion from MLCP to LCP
The MLCP in Equation (B.11) can be transformed into the following set of equations:
A=(0A"J)gATD -0

‘o Ab—1T2) (B.13)

with A > 0. The first equation is known as a Linear Complementarity Problem (LCP) which
solves for the unknown multipliers A > 0. Furthermore, the LCP can be rewritten using slack
variable y such that:

0<Alys= (JA—le) A-JAb+c>0, (B.14)
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with A L y © ATy = 0 the complementarity condition. A typical method for solving this
LCP is using the Projected Gauss-Seidel method, see Appendix B.2.5. These (projected) mul-
tipliers are then applied in the second equation in order to obtain x. Other methods are for
example Lemke’s Algorithm [43]. The advantage of converting an MLCP to an LCP is that the
problem to solve becomes smaller and its dimensionality is determined only by the number
of constraints. If one is able to invert matrix A easily, then this is an efficient approach for
solving MLCPs. However, if the inverse of A is not easy to compute, then it is better to solve
the MLCP without this conversion to an LCP.

Boxed Linear Complementarity Problems

Within standard LCPs, the multipliers are in general positive and therefore have a range A €
[0, 0]. When also the upper-bound of this range is clamped by a constant, the method is
known as a Boxed Linear Complementarity Problem. The purpose of this clamping can be
for example found in the treatment of friction in contact mechanics. By approximating the
upper-bound of the friction forces, a simple approach for friction is obtained. However, the
results are not physically correct since the bounds are a rough approximation, see [37].

Non-Linear Complementarity Problems

In cases in which the bounds of the multipliers are given by the value of other free variables or
the multipliers, the method becomes a Non-Linear Complementarity Problem (NCP). Examples
for this type of problems are for instance a Coulomb friction model. The maximum friction
force depends on the magnitude of the normal forces and is not on beforehand known. Due to
this coupling of the multipliers, the problem becomes much harder to solve and is in general
non-linear, despite the quadratic objective function.

B.2 Numerical Methods

In this section we describe a number of numerical methods used to solve linear problems. The
steepest descent method is described since it shows how gradient based optimization meth-
ods work. Followed by Krylov subspace methods, Conjugate Gradient and Conjugate Residual
methods and how they are preconditioned. Finally also the frequently used Jacobi and Gauss-
Seidel methods are briefly discussed.

B.2.1 Steepest Descent

The Steepest Descent, or Gradient Descent method, is a method which can be used for solving
linear and non-linear systems. Although it is not widely used for solving linear systems, it can
be used to understand many related Krylov subspace methods.

Suppose a linear system Ax = b should be solved for x, with A a Symmetric Positive Definite
(SPD) matrix, a quadratic function can be defined which has a global minimizer for the solution
of that linear system, i.e.,

g(x) = xT Ax — 2xTb, (B.15)

with
Vxg(x) = 2Ax — 2b = —2r, (B.16)
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its gradient and r the residual vector r = b — Ax. In order to move the current approximation
of x closer to the real minimizer, a step ¢ into some direction p is performed, i.e.,
gx+1tp) = (x + tp)TAx + tp) — 2(x + tp)Tb (.17)
1
= g(x) + 2tpT Ax + t’pT Ap — 2tpTh,

with ¢ the step-size along p. To bring x closer to the minimum, ¢ must be chosen such that
h(t) = g(x+tp) is minimized. This line search problem has a minimizer which is located where
h’(t) = 0. For linear problems this reduces to:

W(t) = 2p” Ax + 2tp” Ap — 2p”b = 0, (B.18)
from which ¢ can be directly computed, i.e.,
p’b-pTAx  p'r

= Ay T by (B.19)

Given t, x can now be updated using
Xiv1 = X; + Lipi. (B.20)

Exactly at this point, vector p and Vxg(x) are orthogonal. Since the gradient of g(x) is a scaled
instance of the residual vector, r and p are orthogonal. This can be directly seen from Equa-
tion (B.19). When p and r are orthogonal at x;,;, t = 0. Which results in no update of x in
direction p. Next, a new vector p can be chosen, and a new step along this direction is per-
formed. Since g(x) decreases the most in the direction of its gradient Vyg(x), the new search
direction p is set to the current residual vector. Since Equation (B.15) is a quadratic problem
with a linear gradient, the residual can be updated using:

Xi+1 = X + 1;p;
Axiy = AX; + t;Ap;
b - Ax; 1 =b - Ax; — t;Ap;
ri =1; — i Ap;.

(B.21)

Otherwise, the residual vector must be recomputed explicitly. By repeating these steps, the
procedure eventually finds an approximation for x which minimizes g(x). This minimization
procedure is the same for Gradient Descent (applied on non-linear problems), Conjugate Gra-
dient, Conjugate Residual methods and many other methods. Their difference is the selection
of the next search vector p.

B.2.2 Conjugate Gradient Method

The Steepest Descent method is in general not used to solve linear problems. Steepest Descent
computes at every iteration a gradient direction and then moves the current approximation in
that direction. In case of a linear problem, the step-size can be computed analytically. Next, a
new gradient direction is computed and a new line-search along the new gradient is performed.

For linear problems, this approach is rather inefficient. If matrix A is Symmetric and Positive
Definite, it can be decomposed into n orthogonal n-dimensional eigenvectors, each associated
with a positive eigenvalue. Furthermore, any SPD matrix can be constructed using n orthog-
onal n-dimensional vectors, not necessary its eigenvectors. Therefore it is sufficient to search
in each of the n orthogonal directions in order to cover the space described by A.
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Within the Conjugate Gradient method [88] the search or gradient vectors are chosen to be
conjugate or A-orthogonal, i.e.,
p; Ap; = 0,if i # j, (B.22)

and the residual vectors are orthogonal,
rlr; = 0,ifi #j. (B.23)

Using these properties it can be shown that after n steps with n different search vectors and
factors t;, the residual becomes zero, assuming exact arithmetic. See for more details and proofs
[35]. However, the Conjugate Gradient method is hardly used as a direct method since more
efficient methods exist. When matrix A is sparse, the Conjugate Gradient method is used as
an iterative method and terminates when the residual norm drops below a certain threshold.

Selection of the residual vectors The CG method selects residual vectors in an iterative
process such that they are orthogonal. The residual vectors are updated as described in the
Steepest Descent method using:

riy1 =1; — tAp;, (B.24)

for some ¢;. The value of t; is chosen such that r;;; and r; are orthogonal, i.e.,

riTriH = riTri - tiriTApi =0, (B.25)
and
rl ri =11 — el Ap,, (B.26)
which gives
T T
PO LN i Ly (B.27)
i = .

T Y :
r; Ap; T AP
Please note that Equation (B.27) yields the same result as the computation in Equation (B.19)
since they both select a residual vector that is orthogonal to p.

Selection of search vectors The search vectors are selected in a similar fashion and are
updated using:
Pi+1 = Tis1 + SiPi- (B.28)

The value for s; is chosen such that p; and p;+; are conjugate, i.e.,

PiTAPi+1 = PiTAl'iﬂ + SiP,-TAPi =0, (B.29)
and
P?+1Api+1 = P?+1Ari+1 + SiplTHApi, (B.30)
which gives
T
L Ar;
si = _M’ (Bgl)
p; Ap;
and
Pir1APi1 = PiniATiv, (B.32)

since piTHApi =0.
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Simplification  The computations of both #; and s; can be simplified further. Using relation

Equation (B.32), t; becomes:

T
r;r;

PiTAPi .

Furthermore, the computation of s; can be simplified using Equations (B.27) and (B.33), i.e.,

t; = (B33)

T T T
P;Ariy1  —TTipr T T

p’Ap,  tplAp, r'r

Si = — (B34)

which reuses the squared residual norm. Using s;, search direction p;4; is obtained. After
this, the method advances to the next iteration and new approximations of t;, s;, Ij+1, pi+1 and
X;+1 can be computed. After performing sufficient iterations, approximation x;; minimizes
Equation (B.15) and the residual norm ||r|| approaches zero.

B.2.3 Conjugate Residual Method

The Conjugate Residual method [113] is very similar to the Conjugate Gradient method. As
its name suggests, the residual vectors are now conjugate (which are orthogonal for the CG
method). The search vectors are chosen to be Az—orthogonal, ie., pJ.TAzpl- = 0 fori # j. Instead
of minimizing the quadratic function in Equation (B.15), the following problem is minimized:

9(X)er = [|Ax = b|I* = (Ax = b)"(Ax —b) = ', (B.35)

with

Vxg(X)er = —2Ar (B.36)
its gradient. The update of vectors x,r and p is done exactly as in the Conjugate Gradient
method. The only differences are the computations of ¢ and s.

Update of residual and search vector  Given function g(x)., and search vector p, approxi-
mation x is moved along p such that h(t) = g(x + tp)., is minimized, i.e.,

gx +tp)er = (x + tp)TA%(x + tp) — 2(x + tp)TAb + bTD

(B.37)
= g(x)cr + 2txT A%p + t°pT A%p — 2tpT Ab.
The minimum of h(t) is located where h’(t) = 0, i.e.,
B'(t) = 2xT A%p + 2tpT A%p — 2pTAb = 0, (B.38)
from which ¢t can be obtained,
TAb _ TAZ TA
_P pAX_PAr (B.39)

pTAzp pTAZP :
Or alternatively, one chooses t; such the residual vectors are chosen to be conjugate, i.e.,
r,-Ar,~+1 = I‘iAI'i - t,~r,~A2p,~ =0, (B40)

and
Tir1ATis1 = T ATy — 1T A%y, (B.41)
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which gives

3 rl.TAri 3 riTHAr,-H
E= Tazo — T a2o " (B.42)
r; A%p; r;, A°p;

Please note that both Equations (B.39) and (B.42) compute the same value. Similarly, the next
search vector p;4; is chosen to be A%-orthogonal by computing s; as follows:

p; A’pis1 = p; A’riyy +s;p] A’p; = 0, (B.43)
and
PiT+1A2Pi+1 = PiT+1A21'i+1 + SiPiT+1A2Pis (B.44)
which gives
PiTAzriH
Si =TT (B.45)
P; A’p;
and
PzT+1A2Pi+1 = PIT+1A2ri+l, (B.46)

since p/, | A?p; = 0. A similar simplification for both t; and s; can be performed as shown for
the CG method, i.e.,

T
ti= Azri , (B.47)
p; A%pi
and
Jp— _p’lTAZri+1 _ __rlT+11&ri+1 _ 1-lT+11&ri+1 (B 48)
Si = TAZ - = - TAZ - = TA. . .
P; Pi th,- Pi r; Ar;

For more details about the derivation and proof of the method we refer to [113].

Since the Conjugate Residual method minimizes the norm of the residual vector, see Equa-
tion (B.35), and g(x)., contains the terms x” A%x and x’ Ab, it actually solves the system
A%x = Ab. Since g(x)., is a convex function, each improved approximation of x monoton-
ically decreases ||r||. Furthermore, since A? is Symmetric and Positive Definite by definition,
A does not need to be Positive Definite. This property makes the Conjugate Residual method
interesting for solving indefinite systems. In Chapter 5 the CR method is used for solving the
indefinite contact problem with inequality constraints and an additional approximation of the
friction force.

Local minima When the CR method is used to solve symmetric indefinite problems, or sad-
dle point problems, it is possible that the method breaks down. The CR method should termi-
nate when the residual vector r is sufficiently small. However, it is possible that the method
breaks down when the gradient Ar becomes zero when the method has found a local mini-
mum. In this case, the computation of ¢; results in zero, while the following computation of s;
results in a division by zero. Hence, the method breaks down. By also considering the norm
of the gradient Ar in the termination test, the method will stop when such a local minimum is
found, see [85].

175

Optimization



Optimization

B.2 Numerical Methods

B.2.4 Preconditioning

Krylov-subspace methods like the CG and CR method can converge slowly when the condi-
tioning of matrix A is bad. Additionally, when an MLCP or QP is solved using the CR method,
the method also converges slowly due to the different scales in the coupled subproblems. To
improve the conditioning, and thus the convergence rate, a preconditioner can be applied. To
apply a preconditioner, the following system is considered:

C,'AC;'Cpx = C'b, (B.49)

with C;'C;' = C™' and C™! the preconditioner matrix. Furthermore, C/}T = C'. Please note
that the decomposition of C™! is only needed in the derivation of the preconditioned meth-
ods. Eventually, matrices C;' and C}' are multiplied. To derive the preconditioned methods
we substitute A = C;lACI_Sl, x = Cgx, b = Cglb and p = Cgp, see [35]. Using these
substitution rules, the substitution for the residual vector can be found by:

r=b-Ax
r= C,'b - C,'AC;'Csx

4 (B.50)
r=C,(b-Ax)
r= C;‘lr.
The update of x remains unchanged, i.e.,
Cpxi+1 = Cpx; +1;Cpp (B51)
Xi+1 = X; + £;p. '
Similarly, the update of the residual remains unchanged,
Cil'riy1 = C'r; — t,C,'AC5'Cp; (B.52)

iy1 =r; — tiAp[-

Contrary, the update of the search vector needs to be changed to deal with the preconditioner,
ie.,
Cgpi+1 = C;'rit1 + 5:Cpp;

Pi+1 = C5'Cy'rint + sips (B.53)

Pis1 = C'rigy + sipis
which is the same for both the CG and CR method. Due to this, the initialization of the search
vector changes to py = CIry.
Preconditioned Conjugate Gradient Method For the preconditioned CG method, ; is ob-
tained in the same way as for the unpreconditioned version using the substitutions shown
in the previous paragraph. Please note that the residual vectors are not orthogonal, but its
substitutes are, i.e, rl.TC;C;lrj = riTC_lrj = 0 for i # j. Contrary, the search vectors re-
main conjugate, i.e., piTCACAIACglCBpj = pl.TApj = 0 for i # j. Using these properties, the
computation of #; can be derived:

t riCln (B.54)
CoplAn '
The computation of s; is obtained similarly:
T -1
I'i+1C Tit1
Si= ———— B.55
' rl.TC*1r,- (B.55)
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Preconditioned Conjugate Residuals In a similar fashion the computations of t; and s; are
derived for the CR method. The conjugacy of the preconditioned residuals become

1r,C5'C,lAC,'Clr; = 1T CT'AC'r; = 0, (B.56)
for i # j. Similarly, the A%-orthogonality for the search vectors become
p; CaC,'AC;'C'AC}'Cpp; = p; AC'Ap; = 0, (B.57)
for i # j. From this the computation of ¢; is derived, i.e.,
= —riTC_lAC_lri. (B.58)
PiTAC_lAPi

Similarly, the computation of s; is obtained, i.e.,

i+1

rl C'AC 'y
r’C1ACr;

(B.59)

i =

Additionally, the CR method also updates vector Ap, i.e.,
Ap;,, = AC 'ri1 + 5;Ap;, (B.60)

such that per iteration of the method only one matrix vector multiplication AC™'r;,; is re-
quired. Please note that due to this preconditioning the residual norm ||r|| does in general not
decrease monotonically, but ||C;‘1r|| does.

B.2.5 Stationary Iterative Methods

Other numerical methods found in contact solver methods are for example the Jacobi and
Gauss-Seidel methods. Both methods are relatively easy to implement and are widely used. A
stationary iterative method has the form

Xi+1 = BXi +c, (B61)

and produces approximations of x that, when all conditions are met, converges to a stationary
(fixed) point. The iteration is commonly called a fixed-point iteration. Depending on the
method used, matrix B and vector ¢ are chosen differently and depend on the splitting A =
L + D + U, with L the strict lower triangular matrix, U the strict upper triangular matrix and
D the diagonal of A.

B.2.6 Jacobi Method

Jacobi’s method is obtained by
(L+D+U)x=>b
DXiJrl =b- (L + U)Xi (B62)
xit1 =D7'(b— (L + U)x;)

and so chooses B = —D™!(L + U) and ¢ = D™'b. This method converges if the spectral radius
of the iteration matrix B is smaller than one. In this case

lim B" = 0, (B.63)

n—oo
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which implies that eventually the change in x vanishes and that the method has found an
accurate solution. A sufficient condition is to have matrix A diagonally dominant [35], i.e.,

llagsll > > Nagll. (B.64)

J#i

B.2.7 Gauss-Seidel Method

The Gauss-Seidel method is very similar to the Jacobi method and is obtained by

(L+D+Ux=b
(D + L)Xi+1 =b- UX,‘ (B65)
xir1 = (D + L)™' (b - Ux;).

Due to the triangular form of (L + D), forward substitution is applied, which yields

1
x:f = a—” bi — Zaijx;‘ - Zainj N (B66)

Jj<i Jj>i

with x* the updated vector x;,1, x; the j-th component of x; and x; the j-th component of x;, .
The Gauss-Seidel method converges when matrix A is Symmetric Positive Definite and/or
diagonally dominant, but might also converge if these conditions are not met [35].

Projected Gauss-Seidel

Projected Gauss-Seidel is a modified version of the Gauss-Seidel method and is often used to
solve Linear Complementarity Problems (LCPs), discussed in Appendix B.1.5. The method is
the same as described in Equation (B.66), except that the newly computed value x} is clamped
or explicitly set to zero.
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C.1 Introduction

C.1 Introduction

A rigid body is an object with an arbitrary shape that is not allowed to deform. Only its
position and orientation are allowed to change during the simulation. This results in 6
degrees of freedom per object: 3 translational and 3 rotational. In contrast, each node of the
deformable mesh adds 3 degrees of freedom to the total.

C.2 Rigid-Body Dynamics
The dynamics of a rigid body directly follows from Newton’s laws of motion, i.e.
Ma=f (Cy)

with f a function of the force. An implicit integration scheme is obtained through a Taylor
expansion and a forward difference approximation of the acceleration:

Vit1 — of
M( At ) =f+argy
Vil — ) £ Ar (6f 6a of 6v of (9x)

M At 020t T ovor  oxor

Vi1 — Vi _ of . of Vit1 — Vi of
M( At )_f+At(8a +0v( At )+6xvl+1)
of of

M- At— — At>—
( v 9x

(C.2)

of
)Vl+1 Atf + (M-Ata)vi,

with j the jerk, the derivative of the acceleration. Since linearized forces are used, this term is
dropped. Similarly, the torque t is given by,
Ira =1, (C.3)

with Ic the moment of inertia or inertia tensor and o the angular acceleration. The implicit
scheme for the angular velocity is obtained as follows:

I (%) = t+At%

() = (G a9 3

Ic (—wi“A; wi) =t+ At (;—tg + j—; (—leAt w,) + :—;wm) v
(IC - At;—t — At g;) wis1 = At + (Ic - Atj—;) w;,

with ¢ the angular jerk, which is also dropped from the linearization. An external force work-
ing on a rigid body also generates a torque t on that body by:

t=rxf, (C.5)
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with r the vector from the center of mass to the point on the surface of the body on which
force f is acting. Due to this, also the cross terms between the torque and force functions are
derived, i.e.,

of of N of
— = —at—o,
ot Jw d¢ (C.6)
ot ot ot
—=—a +_—V.
ot odv o0x
This results in the following linear system for rigid bodies:
of of of of
M- A;m - Atzm —Ata—%— Atzﬁa ( Viel ) B
t 2 8t t 2.0t , =
—Atm — At % IC — At% — At (9_()5 Wi+1 (C7)

of of
(£ ) ()
t —Atm Ic - Atﬁ_(u Wi
In cases in which rigid bodies are not connected through joints and springs, most of the partial
derivatives of the forces, torques and cross terms are zero, leaving only the mass and inertia
tensor. After solving this system for the unknown linear and angular velocities, the object is

translated and rotated around its center of mass using Atv;.; and At@;.1.

For the following time-step, the inertia tensor must be recomputed due to the rotation of the
object. Alternatively, the total rotation can be maintained by updating the total angle ¢;; =
¢;i + Atw;y1. Using ¢;11, a rotation matrix can be constructed which is used to compensate the
inertia tensor for the rotation, i.e.,

Icr = RICR7L. (C.8)

C.3 Center of Mass and Moment of Inertia

The previous subsection derived the equations of motion for rigid bodies. They solve for a
linear velocity of the center of mass and an angular velocity around that center of mass. In the
following paragraphs a brief overview is given about the computation of this center of mass
and the momentum of inertia.

Centerof mass The computation of the center of mass is straightforward. In case the object
is described by triangles, each triangle forms a tetrahedron with a particular fixed point x,.
Given the orientation of the three face vertices and the fourth fixed vertex, a tetrahedron is
created with either a positive or negative volume. The total mass m of the object is the sum of
all (signed) signed masses m; of all tetrahedra. Next, the center of mass of the object is obtained
by computing the weighted average of all centers of mass of each individual tetrahedron, i.e.,

n
Xi1+Xj2+X;3+Xy)m;
X, = z : ( i1 i,2 i,3 0) l, (C9)

— 4m
with x;  the vertices of tetrahedron i and x, the common fixed vertex. At this center of mass,
the weighted sum relative to x, becomes zero, i.e.,

n

0= Z (Xi,l +Xj2+X;3+ X0 — 4Xc) m;

(C.10)

i=1 4m
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C.3 Center of Mass and Moment of Inertia

Mass matrix The mass matrix M relates the linear acceleration of the rigid body with the
linear forces applied on the body. This matrix is just mls3x; matrix with the mass of the object
on the diagonal. Similarly one can relate the angular acceleration with the angular forces
using the inertia tensor. This tensor depends on the shape of the object. The next paragraph
describes how this inertia tensor is obtained.

Inertia tensor  The computation of the inertia tensor requires the center of mass x. of the
object. Given each triangle of the object, a tetrahedron is created using the three vertices and
the center of mass. Each tetrahedron can have a positive or negative volume. Given the volume
of the tetrahedron, its mass can be computed.

Next the local inertia tensor of the tetrahedron is computed by first moving the center of mass
X.,; of the current tetrahedron to the origin. Then for each vertex of the tetrahedron a skew
symmetric matrix is created, i.e.,

0 —rj,z rj,y
S] = rj,Z 0 —rj’x N (Cll)
—rj,y rj,x 0

with r; = x; ; — X¢,; the vector between the origin and the translated vertex. Finally, the local
inertia tensor is obtained using

T

Sijml- 4 Sjsj m;

1,-_—2 el e (C.12)
Jj=1 Jj=1

with m; the mass of the tetrahedron.

Given all local inertia tensors, the inertia tensor of the whole object is obtained using

n
Ic = Z I; + I'ITI','I - l'il'lei, (C.13)

i=1

with r; = X, ; — X, the vector between the center of mass of the tetrahedron and the center of
mass of the object, r’r; the squared length of r; and rjro the outer product.
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D.1 Introduction

D.1 Introduction

In this chapter we provide additional background information about Linear Elasticity and
its application to arbitrary objects using the Finite Element Method (FEM). First we briefly
describe linear elasticity, followed by an overview of FEM as used in Chapters 4 and 5. Finally,
an overview is given on methods for approximating non-linear hyper-elastic materials as used
in Chapter 5.

D.2 Linear Elasticity

Strain  The deformation of a body is measured by strain, which is defined as
1
€= ((qu)T + qu) , (D.1)

with u = [u, v, w]” the relative displacement of a point in the deformed body, Vyu the material
displacement gradient tensor and € the dimensionless strain tensor describing normal strain and
shear strain. Normal strain can be described by

ou v ow

XX — [ s = 7 €2z = D.2
€ ox” vy dy € 0z (D2)
and shear strain is described by
1 (0v N ou 1{du N ow 1 (0w . ov (D3)
exy=slo-t e =S\t o= o 5 oo .
Woo\ox oyt 2\ox 0z YF 2\0y 0z
The strain tensor now becomes:
Exx €Exy €Exz
€=| €yx €yy €yz |- (D.4)

Stress The application of an external force on a body results in stress inside the body. In
continuum mechanics, stress is described by stress vector t™ = n.o, across an arbitrary plane
described by normal vector n, with

Oxx Oxy Oxz Ox Txy Txz
o= oyx oy oy |=| Tyx Oy Ty (D.5)
Ozx Ozy Ozz Tzx Tzy Oz

the so called Cauchy stress tensor. Alternatively, the stress tensor can be described using its
normal stress components,

_dfn
oy = 5 (D.6)

with d f,, the normal component of df to differential area dS. Furthermore, the shear stress is
given by

_4s
T= 15 (D.7)

with df; the tangential component of df, which is decomposed in two perpendicular compo-
nents.
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The equilibrium state follows from the principle of conservation of linear momentum, i.e.,

Boxx ao.xy (90'xz
+ +

x =0
ox dy 0z tf
doyx Ooyy 9oy,
=0
ox " Jy " 0z tfy
a zZX a 8 zZz
o, + Ozy + O, +fz =0, (Dg)

Ox oy 0z
which is V - o + f = 0, with f the forces inside the body. The boundary conditions associated
with Equation (D.8) directly follow from the definition of the stress vector t", i.e.,

OxxNx + Oxyly + OxzNz = Iy

OyxNx + Oyyly + OyzN; =1y

Oxlix + Ogyly + 02N =ty (D.9)
with t the stress / force applied on the boundary of the object. Furthermore, due to the principle
of conservation of angular momentum, the stress tensor is symmetric, i.e., 0;; = 0j;.

Hooke’s law  Since the normal and angular strain can be measured given the deformation,
Hooke’s law is used to relate the stress and strain given some material parameters of the de-
formed body, i.e., ¢ = De, with D the material stiffness matrix. If the unique components of
the stress and strain tensors are described in Voigt notation, this relation becomes

Oxx diy dip di 0 0 0 Exx

O'yy d12 d11 d]z 0 0 0 eyy

Ozz | _ diz diz din 0 0 0 €22 (D.10)
Oxy 0 0 0 d44 0 0 €Exy ’ '
Oxz 0 0 0 0 dy O €xz

Oyz 0 0 0 0 0 d44 eyz

with D the material stiffness matrix for isotropic materials. The unique parameters in D can

be described using Young’s modulus of elasticity E and Poisson’s ratio v, i.e.,
E(1-v) E(v) E

T A —2) T A2 M T )

Please note that many other types of material stiffness matrices exist which are also used for

anisotropic materials. Within this dissertation we only focus on linear elasticity based on
isotropic materials.

(D.11)

11

D.3 Finite Element Method

The Finite Element Method (FEM) [143] is a numerical method for approximating the solu-
tion of partial differential equations over arbitrary shaped domains. The method divides the
computational domain in a large number of arbitrary shaped elements, which approximate
the solution using linear or higher-order shape functions. The method uses the so called Weak
formulation of the problem, which is a less strict version of the original PDE and has for exam-
ple less restrictions on the smoothness. Using the Galerkin form of the weak statement, only
a finite number of parameters are needed to compute in order to approximate the solution. In
this section we briefly describe this process for the linear elasticity problem presented in the
previous section.
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Weightedresiduals  Suppose the computational domain is divided in a finite number of non-
overlapping sub-intervals with each sub-interval a so called element. The endpoints of these
intervals are the nodes or vertices of the elements. For each node the solution of the differential
equation is approximated using a number of predefined shape functions and the same number
of unknown parameters. Once the parameters are known, the approximation of the solution
is also known at the nodes or vertices of the elements. However, the approximation is not
exactly the true solution everywhere in the domain and some residual remains. Using a so
called weighting function the residual is weighted such that

/ EOR(Z(x), %) dx = 0, (D.12)

with ¢(x) a weighting or test function, R(x) the residual of the PDE to be weighted and Z(x)
the solution quantity that is approximated by the PDE. This quantity is defined over the whole

domain as:
n

Z(x) ~ Z z; (%), (D.13)

1

with ¢ the shape functions and z the unknown coefficients. The weighted residual function is
then solved for the unknown coefficients z such that the weighted residual will vanish over the
whole domain. The choice of this weighting function depends on the used procedure. In our
case we use the Galerkin procedure, which uses the shape functions as weighting functions.
The advantage of this procedure is that it yields a system of equations that has the same number
of equations as unknowns. This guarantees the existence and uniqueness of the approximation
of the solution, if the boundary conditions are specified correctly. The shape functions have a
certain order, e.g., linear, cubic, quadratic or higher order, and depend on the shape and size of
the element. The elements can be simple 1 dimensional rods, or 3 dimensional tetrahedra or
cubes. Since the derivatives of these functions are in general not continuous at the nodes or
vertices, and higher order derivatives might not exist, the differential equation is transformed
into a weaker form, which has weaker requirements with respect to the derivatives of the
approximation. This form is in general obtained using integration by parts or in higher dimen-
sions using Green’s theorem (2D) or Gauss’ divergence theorem (3D). In the next paragraph we
derive the weak form of the elasticity problem shown in Equations (D.8) and (D.9).

Weak form of Linear Elasticity For convenience, Equation (D.8) can be written in matrix-
form, in which operator P contains the partial derivative operations, i.e.,

i) a 0 T
Foooo ko
P= 0 & g £ g i | (D.14)
o 0o £ o £ £
resulting in
P'DPu-f =0, (D.15)

which contains second and mixed derivatives of the solution u. This solution is approximated
using a finite number of non-overlapping elements which cover the complete computational
domain. These elements have their shape functions N, and together with the unknown nodal
parameters U they approximate the solution using the shape functions, i.e.,

u = Nu. (D.16)
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Please note that the dimensions of N and G depend on the shape and the order of the used
elements. Next, the residuals are weighted by a test function and integrated over the domain.
Using the Galerkin procedure the shape functions are also used as test functions,

/ N7 (PTDPNﬁ) ~NTNFdV = o, (D.17)
\%4

such that the weighted residuals will vanish for the obtained solution. Finally, using Gauss’
divergence theorem, Green’s first identity is applied, resulting in:

/ (PN)T (DPN@) + N7 (PTDPNﬁ) dv = / (NTDPNﬁ) ‘ndA= / NTNidA.  (D.18)
Vv A A

This is a weak form of Equation (D.17) in which the second and mixed derivatives of the
approximation vanish and additional first derivatives of the shape functions and boundary
conditions appear, i.e.,

/ (PN)” D (PNd) - NTNfdV — / N'NtdA = o, (D.19)
\%4 A

with PN the first derivatives of the shape functions. This system becomes
Ka=f (D.20)

in shorthand, with K the stiffness matrix, @ the nodal displacement and f the vector containing
the body and external boundary forces. All internal boundary conditions between elements
will vanish, and remain for the outer boundary of the domain.

Linear Shape functions Per element a set of shape functions are defined which, together
with some unknown parameters, approximate the solution, see Equation (D.16). The shape
functions depend on the shape and order of the element. In this dissertation we use three-
dimensional elements (tetrahedra) on which we define linear shape functions. Per tetrahedron
four nodes are used and possibly shared with neighboring elements. The shape functions
define the (piece-wise) interpolation of a quantity ¢ inside the element at position (x, y, z), i.e.,

¢ =y + xay + yas + zay, (D.21)
with a the coefficients of the linear function. At each vertex node we have

$1=a1+x100 + Y103 + 2104
¢2 = a1+ X200 + Y203 + 2204
3 = o1 + X302 + Y303 + 230
s = 01 + X402 + Yst3 + 2404 (D.22)

At (x1, Y1, 21), ¢ should evaluate to ¢;, whereas the other ¢’s evaluate to zero. This generalizes

to
¢ =Ca, (D.23)

with C containing the coordinates of the nodes of the element. Using

a=Cl¢, (D.24)
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the unknown constant and linear coefficients of the element are obtained. In order to obtain
the shape functions N, quantity ¢ is transformed into a function containing the nodal values
@1, P2, ¢3 and ¢4 such that

P(x,y,2) = Ni(x,y, 2)p1 + Na(x, y, 2)p2 + N3(x, y, 2)p3 + Nu(x, y, 2)ps (D.25)

gives the interpolated value of ¢ at (x, y, z), with N;(x, y, z) the shape functions at the corre-
sponding node. In order to obtain these shape functions, the following relation is used:

dxy2)=(1 x y z)a

px,y,z2)=(1 x y z)C'¢

$(x,y,2) = N(x,y,2)¢, (D.26)
with

Nexy2z)=(1 x y z)C'=(N N, Ny Ny), (D.27)

which is a vector containing the values of all shape functions at (x, y, z). Furthermore, if (x, y, z)
represents the coordinate of a particular node of the element, Equation (D.25) returns the cor-
responding nodal value of @. Please note that ¢ can represent any quantity with any dimen-

sionality. In case of Equation (D.16), in which ¢ represents the three dimensional deformation,
the interpolation becomes:

u(x, Y, Z) = Nju; +Nous +N3us +Nyiiy
v(x, Y, Z) = Njv1 +Nyvy +N3v5 +Nyvy
w(x, y, z) = Niwi+Nowz+N3ws+Nyws, (D.28)

which in matrix form becomes

Ui

U1

u N1 0 0 N4 0 0 Wi
u=|ov |=[ 0 N O ... 0O Ny O R (D.29)

w 0 0 N1 0 0 N4 Uy

(21

Wy

Shape-function derivatives When the problem is discretized using FEM, the shape func-
tions are not used directly. Instead, their derivatives and integrals at the nodes are used. For
example, the derivative of ¢ becomes

6¢)(x, Y, Z) (9N1 aNz 6N3 8N4
_ = — —_— B — Q4. D.30
ox 6x¢1+8x¢2+ 6x¢3+ 8x¢4 ( )

Since the shape functions depend on x, see Equation (D.27), and ¢ is constant at the nodes, the
derivative becomes

ohrys)_0(1 x y z)

=14 _ -1
o i C'¢=(0 1 0 0)Cg, (D.31)

which boils down to a row in matrix C™!. Similarly, the derivatives of the shape functions to
y and z are obtained.
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Volumeintegration  As shown in Equation (D.19), the shape functions (and their derivatives)
are integrated over the volume of the element. In case of linear shape functions, the derivatives
result in constant terms. This make the integration of the first term of Equation (D.19) trivial.
In case the shape functions are used directly, the shape functions need to be integrated over
the volume. When a volume coordinate-system is used instead, the integration becomes easier.
For linear elements the four volume coordinates are related by:

x = Lyx1+Lyxy+L3xs+Laxy,
y = L1y +Loy2+L3y3+Laya,
z = L1z1+Lyzs+L3z5+L4zy,
1=L; +Ly +L; +Lg, (D.32)

which simply give the shape functions Ny = Ly, N; = Ly, N3 = L3, Ny = Ly. These volume co-
ordinates are similar to the Barycentric coordinates of a tetrahedron. For example, the integral
fv NN dV expands to

L2 Lil, Lily Lyl
/ LyLy L% LpLy Ly,
vl LsLi LsL, L% LsL,
LyLy L4l L4Ls I3

dv. (D.33)

Using numerical integration, the individual terms in Equation (D.33) can be integrated over the
volume. In case of simple expressions (linear shape functions), the integral can be evaluated
directly using:

a'blcld!

arbrcrd _
/VL1L2L3L4 dv = (3+a+b+c+d)!6Ve’

with V, the volume of the tetrahedron. The expression in Equation (D.33) therefore becomes

(D.34)

0.10 0.05 0.05 0.05
0.05 0.10 0.05 0.05
0.05 0.05 0.10 0.05
0.05 0.05 0.05 0.10

Ve, (D.35)

which only depends on the volume of the element. In case of higher-order elements or when
the number of terms are large, a numerical integration scheme, such as Gaussian Quadrature,
must be used instead. For more details we refer to [143]. Similarly, /V NT dV becomes

/( Li Ly Ly L) dv=(025 025 025 025) V. (D.36)
|4

In case of higher dimensional problems, like the elasticity problem in Equation (D.19), the
shape functions (and their derivatives) are integrated over the volume of the elements, result-
ing in 12 X 12 and 3 X 12 matrices per element, see Equation (D.29).

Timeintegration The system described in Equation (D.20) computes the displacement of the
nodes, given some external load and other boundary conditions. The system itself does not
account for time and dynamics, therefore it computes the deformation after an infinite amount
of time. To cope with the change of the material over time, Equation (D.20) is time-integrated
using a semi-implicit scheme. In general, a body is in a natural rest state if

ma + cv +PTDPu = f, (D.37)
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with m the mass of the object, a the acceleration, ¢ a damping constant, v the velocity, PTDPu
the elasticity forces and f the external forces. First, the acceleration and displacement are
rewritten in terms of the velocity, i.e., a = % and u = Atv;;1 + X; — Xg. This results in the
following system:
Vit1 — Vi
At

with v;,; the unknown velocity, v; the velocity of the previous time-step, x, the initial posi-
tions and x; the nodal positions at the previous time-step. This can be rearranged as

+Ccvig + PTDP (AtVHl +X; — X()) =f, (DSS)

(m + Ate + AtzPTDP) Vier = mv; + AtPTDP (x; — x0) + Aff, (D.39)

which is the semi-implicit time integrated form of Equation (D.19). Next, the Galerkin proce-
dure is performed and finally the weak-form is obtained, as described previously, i.e.,

/ NT (m +Atc+ AtzPTDP) N, dV =
\74

(D.40)
m/ NTNV; dV + At/ (PN)T DPN (%; — %o) dV + / AtNTNF dV,
Vv 14 \4
which can be reordered as:
m / NINV;41 dV + Atc / NTN¥;,1 dV + At? / (PN)! DPN¥;,, dV =
v v v (D.41)

m/NTNfzi dV+At/(PN)TDPN(>‘(,~—$<O) dV+/AtNTNde,
14 Vv 14

with m and c the element mass and damping factor respectively. Please note that also a nodal
representation of the velocity, positions and forces is used, i.e., ¥, X and f. This results in:

(M + AtC + At?K) Vi1 = MY; + AtK (%; — %) + A, (D.42)

with M € R1?2%12 the element mass matrix, C € R!?¥!2 the element damping matrix, K € R12¥12
the element stiffness matrix, f € R1*12 the integrated nodal external load. Per element the mass
matrix is computed using m /V NTNdV, see Equation (D.35). Similarly, the damping matrix is
obtained. In the rest of this chapter only the nodal values of all quantities are used, therefore
we drop the * notation in order to improve readability.

Assembled system  For each element in the discretized model, a small linear system is ob-
tained. Since nodes are shared between elements, a global linear system is assembled based on
all local systems. Each local linear system acts on a shared set of nodes, which are part of the
global system. The values of the global system are obtained by adding all local systems to the
global system, respecting the unique ids of the nodes. The obtained system can then be solved
and gives an approximation that minimizes the residual with respect to all nodes. In the rest of
this dissertation we do not consider the individual elements but work with the global vectors
and matrices instead.

D.3.1 Corotational Finite Elements

The system described in the previous paragraphs describes the deformation of a body over
time. At each time-step the configuration of the mesh (with its vertex positions stored in x)
changes shape and orientation. Since this change in orientation also changes the reference
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frame for the computation of the elastic forces, we must compensate for this rotation, as de-
scribed by Muller et al.[124]. The main idea is to compute the elastic forces using the orienta-
tion of the element described at x¢. Given the orientation corresponding to the configuration
at x;, the deformation u is rotated back using r! to the initial orientation of the element. After
computing the elastic force in the initial orientation, the elastic force is rotated to the current
orientation of the element using r. The rotation of a particular element with respect to its
initial configuration is stored per element in r, which is an orthogonal 12 X 12 matrix with 4
instances of the same 3 X 3 rotation matrix on the main diagonal. This gives the following
co-rotational elastic force:

f = RKRTx; — xo), (D.43)

with R a global matrix assembled using all local rotations r. Please note that x, reflects the
configuration of the element at their initial configuration, therefore no additional rotation is
required for xg.

Rotation retrieval Rotation matrix r in the previous paragraph describes the rotation of the
element with respect to its initial configuration. The rotation, together with the deformation,
form the complete transformation F from the initial configuration to its current one. Matrix
F is also known as the Deformation Gradient Tensor, see next section. In order to obtain the
rotational component of the transformation, a Polar Decomposition can be used. The Polar
Decomposition decomposes the transformation F into a unitary (orthogonal) and a Hermitian
(symmetric) matrix, and can be obtained using a Singular Value Decomposition (SVD) of the
transformation matrix F. The rotation is obtained using r = UV, with U and V the matrices of
the SVD. If the element undergoes an inversion, the rotation matrices may contain a reflection.
To deal with these situations, a correction is applied, see [95] and the next section for more
details.

Implicit time-integration  The rotation matrix R is included in Equation (D.42) resulting in:
(M + AIC + AtZRKRT) Vis1 = Mv; + AfRK (RTxi - xo) + A, (D.44)

which becomes
AVi+1 = b, (D45)

in short, with A a symmetric and positive definite matrix. The system is solved for v, fol-
lowed by an update of x;11 using X;+1 = X; + Atviiq.

The system in Equation (D.44) also contains an approximation of the elastic force derivatives

of . RKRT v, ;. (D.46)
ot
However, since the forces depend on the rotations, and the deformation changes the rotation
of the elements, also the derivatives of the rotation matrices must be included, as mentioned
in [12], i.e.,
df  ORK(R"x;.1 — xo) 0x
ot dx ot

Instead of computing the derivatives % directly, the derivatives with respect to the defor-

. . JF; . . . . .
mation gradient tensor are used: %6—". Since the rotation is obtained using the polar
ij X

(D.47)

decomposition of F, also the gradients of the SVD operation are required. In the next section a
summary is given on the computation of hyper-elastic material, which includes a description
of the SVD derivatives.
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D.4 Non-Linear (Hyper) Elasticity

The elasticity model described in Appendix D.2 is a widely used approach in Computer Graph-
ics for deforming elastic objects. Since the underlying elasticity model is linear, the model is
not accurate in cases with large deformations; it is possible that elements can invert, resulting
in an incorrect visualization of the simulation, an incorrect force computation and possibly
oscillations in the simulation. A discussion on the behavior of energy models when elements
invert can be found in [168]. Inversions are possible due to the constant stiffness of the ma-
terial. In cases of large compressions, the (constant) stiffness of the material is not sufficient
to prevent a collapse of the elements. This suggests that the stiffness should increase due
to compression of the material, i.e., the stiffness should in theory approach infinity while the
volume of the elements approach zero. These non-linear materials can be modeled using Piola-
Kirchhoff stress which is the derivative of some strain energy density function, which can be
defined for any kind of material.

Deformation gradient tensor Considering a point X in the undeformed object (reference
configuration), there exists a map ¢ to the same point x in the deformed object, as x = ¢(X).
The total displacement of a point X to x can be described by:

u=x—-X+b
u=¢X)-X+b, (D.48)

with b a linear translation. The deformation gradient tensor is then obtained through the
material displacement gradient tensor of Vxu, i.e.,

Vxu = VXqS(X) - VxX + be
Vxu = Vxp(X) - 1
Vxu=F-1, (D.49)

with F = %ﬁ() the deformation gradient tensor. When the space is discretized using, e.g.,
tetrahedral elements, the deformation gradient tensor relates the undeformed tetrahedron X
with the deformed configuration x, i.e., Ds = FD,, with

Xl,x - XO,x X2,x - XO,x X3,x - XO,x
Dm = Xl,y - X()’y XZ,y - XO,y X3,y _XO,y (DSO)
Xl,z - XO,Z XZ,Z - XO,Z X3,z - XO,Z

the matrix containing the edges of the undeformed tetrahedron. Similarly, Dy is defined as:

X1,x — Xo,x X2,x —Xo,x X3,x — Xo,x
Ds = X1,y — X0,y X2,y —Xo,y X3,y — Xo,y . (D51)
xl,z - xO,z xZ,z - xO,z x3,z - xO,z

Using F = D;D;,! the deformation gradient tensor is obtained for a single tetrahedron.

Finite volume method  The finite volume method is very similar to the finite element method
and also relies on the divergence theorem. The divergence of a vector field in a closed volume
equals the outward flux of the same vector field through the closed surface of the same volume,
ie.,

/V(V~Z)dV= /SZ-ndS, (D.52)
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for some vector field Z and n the surface normal. Given the Cauchy stress tensor o, the surface
traction t on boundary S is expressed as t = on, with n the surface normal. Furthermore, the
force at a specific location, associated with a certain volume, is computed as:

fzg///pvdx:/andS:/tdS, (D.53)
Ot JUJ x s s

with p the density of the material. If this volume coincides with one tetrahedron, the Cauchy
stress tensor o is constant, hence, the net traction and force are zero and the mass is constant,
i.e., traction t on the surface is divergence-free. From this observation, the traction on all
surfaces of one element can be related to each other by:

4
Z / on; dS; = 0, (D.54)
i=1 i

for all surfaces S; of a tetrahedron. To compute the force acting on a certain vertex j of the
tetrahedron, the average normal stress of the three incident faces connected to vertex j is
computed by:

1
fj = _56 (alnl + any + a3n3), (DSS)

with a; the area of the associated face incident to vertex j. By accumulating all forces applied
on vertex j resulting from all stresses in the connected tetrahedra, the net force f; is obtained.

Piola-Kirchhoff stress Where the Cauchy stress tensor measures stress at the current (de-
formed) configuration of the object, the First Piola-Kirchhoff stress tensor measures the stress
relative to some reference configuration of the object. Using the deformation gradient tensor
F, quantities can be transformed from the reference configuration to the current deformed con-
figuration. Similarly, the change in volume of the reference configuration to the current con-
figuration is expressed by dv = JdV, with J = det(F) the change in volume, dv the deformed
volume and dV the reference volume. Eventually, using Nanson’s relation, da n = JdAF~ TN,
the reference normal N and area dA can be used to obtain the current configuration of the
normal n and area da through the deformation gradient tensor and the change in volume J.

Since the traction t on the surface is computed using t = on using the current configuration
of the material, we can use Nanson’s relation to obtain the same traction using the reference
configuration, i.e.,

t=JoF TN
t = PN, (D.56)

with P = JoF T the First Piola-Kirchhoff stress tensor, which computes a stress given a ref-
erence configuration and the deformation gradient tensor between the reference and current
configuration. Since a rotation of the object is encoded into the deformation gradient tensor,
this stress tensor is not invariant to rotations. Furthermore, since P relates two configurations,
the tensor is a two-point tensor and is therefore not symmetric.

The Second Piola-Kirchhoff stress tensor S computes stress only for a given reference con-
figuration. The Second Piola-Kirchhoff stress tensor is defined as S = JF~'oF~T. Since o is
symmetric, S is also symmetric, which implies that the Second Piola-Kirchhoff stress tensor is
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rotation invariant. Given the definition of the First and Second Piola-Kirchhoff stress tensors,
the First Piola-Kirchhoff stress tensor can be expressed in terms of the Second Piola-Kirchhoff
stress tensor, i.e., P = FS.

Given the force computation shown in Equation (D.55), a similar computation can be obtained
using a reference configuration through Nanson’s relation, i.e.,

1
fi= - ga(alnl + asny + asns)
1
fj = — 5]_1FSFT(aln1 + azny + asns)
1
f,= - 3 J'FSFT(JA;F TN, + JA,F N, + JAsFTN;,)
1
fj = - gFS(AlNl +A2N2 +A3N3)
1
f,= - 51>(A1Nl + AoNy + A3N3), (D.57)

which measures a force based on the initial configuration of the surface and the First Piola-
Kirchhoff stress tensor.

The First Piola-Kirchhoff stress tensor can be obtained by taking the derivative of the strain
energy density function W with respect to the deformation gradient tensor, i.e,

AW (F)

PF) = —2—

(D.58)

this makes it easier to define various constitutive models based on the underlying energy den-
sity function W (F). For isotropic materials W can be expressed in terms of invariants of F, i.e.,
its determinant or eigenvalues. Furthermore, since the First Piola-Kirchhoff measures forces
based on a reference configuration, this model better fits cases in which larger deformations
occur, see, e.g., [176] for more information.

Diagonalization using Singular Value Decomposition  The stress inside a volume should
be invariant to additional rotations of the volume. Given the definition of the Piola-Kirchhoff
stress, see Equation (D.58), a diagonalization through the Singular Value Decomposition (SVD)
can be obtained. Using a SVD, the deformation gradient tensor F can be decomposed as
F = UFV7, with F a diagonal matrix representing the pure deformations in each dimension.
Matrices U and V are two orthogonal rotation matrices which describe the rotations of the
deformation gradient tensor. Since the invariants of F are also invariant to rotations, F has
the same invariants of F. Therefore, the following relation holds: P(F) = UP(F)V7, which also
shows that P is rotation variant, as mentioned in the previous paragraph. This allows one to
define and use constitutional models for materials based on only the singular values of the
deformation gradient tensor.

Force Jacobian  There exist several methods for approximating the force Jacobian, see, e.g.,
[176]. Due to its purity we follow the procedure using the Singular Value Decomposition and
its derivatives as presented in [161]. The Jacobian of the force on a single node of a single
tetrahedron is given by

of; _ of; OF, x _ Z (_ 6P(F)bi) OF;

ot _ Tk _ ; D.59
ox = OF; , 0x OF, « ox (D:59)
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with b; = (A1N1 + ANy + A3N3) /3

Given the Singular Value Decomposition (SVD) of the deformation gradient tensor F = UFV7
and P describing an isotropic material, P can be defined as P(F) = UP(F)V'. The Jacobian of
P(F) becomes:

oP(F) _ 0U T a P(F) OF _, . ovT
F P(F)V aF aFV + UP(F) TR (D.60)

with 9P(F)/OF the Hessian of the strain energy density function W (F). Given the used consti-
tutional model, its Hessian can be obtained analytically. The other terms needed to compute
the Jacobian of the elasticity force requires the derivatives of the Singular Value Decomposi-
tion, see [141, 161]. Here we shall give a brief summary of its computation. In order to omit
a tensor notation, the derivative of the SVD is computed per component of the deformation
gradient tensor F, i.e,, for each F; i

The derivative of the SVD of the deformation gradient tensor F with respect to itself can be
obtained as follows. First the derivative is pre and post multiplied by U and V respectively.

OF U . oF . VT
= Vvl + U—VT + UF
6Fj’k aFj,k 8Fj,k 0Fj’k
OF au . OF . ovT
UT( )V:UT (—FVT+U—V +UF )V
6Fj’k aFj,k 3Fj,k 6Fj,k
r 0U oF . [(aVT
§) F+ +F V]. (D.61)
(3F, k 6Fj,k 6Fj’k
N———— N—————
a)j'k wjvk
U vT

Jj.k aFlm

This gives the matrices ;" and w . Furthermore, it should be noted that = 0 for all

(I, m) # (j, k) and 1 otherwise. Since U is orthogonal, it can be shown that matrlces co{}k and

wé’; are antisymmetric, i.e,
ou'u Al ou’ ou ;
= e U+UT = =o"f +0lf =0 (D.62)
OF; i 5Fj’k OF, Fx U

The same holds for VT and a) . Due to this, and the fact that Fisa diagonal matrix, aF—F
yields exactly the diagonal of the matrix on the left hand side of Equation (D.61). In order to

compute the components (I, m) of both a){]’k and w{,’i the antisymmetric properties of these

matrices are used. Hence, the following set of equations are solved for each component in the

7, k
lower-triangular parts of a)U and @)

V(2 )y) =+ (ett),, 0,6, (o),

(UT (aifk ) V) k.1 - (ijk)l,m (F)l,z a (F) m (w{/JTc)l’m’ (D.63)

with (.); , component (I, m) of the involved matrix. Solving this linear system gives one com-
ponent in w{]’k and ’ f When the difference between the components in F is small, the system
in Equation (D.63) becomes ill-conditioned, which requires a Tikhonov regularization in or-
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der to solve it properly. After solving 3 of these 2 X 2 systems, the derivatives of the rotation
matrices with respect to F; i are obtained using

aU - ij’k
(3Fj,k U
ovT ;
o AL (D.64)
Js

In order to obtain the Jacobian of the elastic force % e R'12 the individual forces f; €

RP3 acting on each vertex i of the tetrahedron are decomposed. Next, the Jacobian is further

RlXIZ

decomposed into g—; for each component in x € ,le.,

£; £, OF; P(F). \ OF;
0 _ 0 j.k _ Z( 0 ( )b,) J.k

ot _ _ c RZ’)XIZ’ D.65
0xy T 0F; i 0x; OF; 0x; ( )

which computes the component of the symmetric and positive definite force Jacobian associ-

ated with the force at node i. The term gl;—(i) is obtained as discussed previously. The remaining
Js

. . OF;
computation is a;jc}k .

Deformation gradient tensor F is obtained from the deformed configuration Dg and unde-
formed configuration D, of the vertices, ie., F = DSD;}. Therefore, the derivative can be
transformed into

OF _ 9D, — aD;,} _ 9D D-1

6xl axl m s axl (9x1 m:
since Dy, is constant, its derivative is zero. Furthermore, D contains the deformed configura-
tion x, i.e.,

(D.66)

X3 —=Xo Xe—Xo X9 —Xo
D= x4—x1 x7—-x1 Xpo—x1 |, (D.67)
X5 —X2 Xg— X2 X11— X2

hence, ‘;215 results in a matrix with only one +1.

Singular Value Decomposition correction  The Singular Value Decomposition of the defor-
mation gradient tensor F is in general not unique. The SVD computes matrices U and V which
can have a negative determinant, while the determinant of matrix F is always positive. Since
U and V are pure rotations, their determinants must be 1. As a result, the determinant of F
must correspond to the determinant of the deformation gradient tensor. In other words, if a
particular element inverts, i.e., it undergoes a reflection, then this inversion will result in a
negative determinant for both F and F. To achieve this, a commonly used ‘convention’ is used,
presented in [95], which will be briefly discussed here.

When the determinant of the deformation gradient tensor is negative, the element is inverted.
In this case the assumption is made that the smallest component of diagonal matrix F had
changed sign. By negating the smallest component in F, its determinant becomes negative and
now matches the determinant of the deformation gradient tensor. Next, if the determinant of
V is negative, its column associated with the smallest component in F is negated. This makes
its determinant positive. Once V and/or F are corrected, U is corrected using

U =FVF . (D.68)

Please note that when an element becomes degenerate, F is not invertible. So extra care must
be taken in order to compute U.

200



D.4 Non-Linear (Hyper) Elasticity

Neo-Hookean Hyper elasticity Instead of using a linear model for elasticity, also non-linear
models can be used. In general, linear models are more prone to collapses of the elements
since the stiffness is fixed, so the force that is generated for a given compression might not be
sufficient. Using non-linear materials, like a Neo-Hookean model for elasticity, in principle an
infinite amount of stress can be measured due to the compression of an element. This prevents
the material from collapsing under heavy load. The Neo-Hookean energy density function is
given by,

¥(F) = (F2 . 3) plnJ + 11 (InJ)y?, (D.69)

with i and A the Lamé parameters for a particular material, and J the determinant of F ie.,
J = FyF,F5. The corresponding stress is given by its derivative with respect to F, i.e,

6‘{’(F) . p AlnjJ

P(F F
(F) = uFF

(D.70)
From this derivation it is easy to see that when J (which is the relative volume with respect to
the initial configuration) becomes very small, the stress approaches infinity. However, when
an element collapses, J can be negative, and thus ¥ and P are not defined. When an infinite
small time-step is used, these problems will not arise, but for large time-steps it is possible that
stress P linearized at the beginning of the time-step is not sufficient to prevent a collapse. To
deal with these situations, F is often clamped such that it is still possible to compute a proper
stress and force. Another approach, presented in [168], is to linearly extrapolate the energy
density function ¥ after a certain amount of deformation is reached. This model is used in
Chapter 5 in which highly deformable objects under high load are simulated. In the following
paragraph this model is briefly described and we show how it is used in the Singular Value
Decomposition Gradients framework.

Energy density extrapolation In order to robustly simulate hyper-elastic materials that can
undergo large deformations, one must handle degenerate cases properly. It is always possible
that an element accidentally inverts. When it does, the computed forces and force derivatives
for such an element should always work in the direction that eventually recovers the element.
In [168] an extrapolation method is presented that extrapolates the energy density function
into the inverted region of the volume. When a certain amount of compression is reached, i.e.,
J < €, the energy density function is linearly extrapolated, i.e.,

. h?
PHEF) = () + AP/ (Qu + ?uT‘P"(C])u, (D.71)

which is a second order Taylor expansion of ¥ around q, using first and second order direc-
tional derivatives in direction u. To do so, first the direction u is determined. This is the vector
from the rest configuration of the material r = (1, 1, 1)T to the current deformation F. Next,
the intersection q at u with surface J = € must be determined. For this a root-finding problem
is solved for s, such that ¢1g2q3 = €, with

g=r+sF-r). (D.72)

Given q, the location is known where ¥ is evaluated and extrapolated into direction u. If J > ¢,
then the ¥ is evaluated at F and not extrapolated. Step size h is the distance between ¢ and
F. Since the force is computed using the first order derivatives of ¥ and the force derivative
using the second order derivatives of ¥, also the first and second order derivatives of ¥¢**
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with respect to F must be computed. Since, q,u, h and s all depend on F, also their first and
second order derivatives with respect to F are required. In order to find the derivatives of s,
an implicit differentiation must be performed on gq;q2q3 = €. Furthermore, also the third and
fourth order derivatives of ¥ are required. See the appendix of Stomakhin’s PhD thesis [170]
for the complete derivation of the first and second derivative of ¥**.

In Chapter 5 the extrapolated energy density function, based on a Neo-Hookean energy density
function, is used in combination with the Singular Value Decomposition Gradients method
described in the previous paragraphs. Given the Jacobian and Hessian of ¥¢*!, they can be
applied directly in Equation (D.65).

D.5 Conclusion

In this appendix we have described the methods used in Chapters 4 and 5 for simulating
elastically deformable models using FEM. Linear elasticity in combination with corotational
FEM [124] is commonly used in computer graphics for simulating deformable objects in which
the deformations are relatively small. Since the element stiffness matrices are computed once,
only the rotation of the elements needs to be computed at each simulation step. This makes
a GPU implementation more straightforward as shown in Chapter 4. When the deformations
are larger, corotational FEM is less accurate due to the absence of the derivatives of the el-
ement rotations. Furthermore, since the stiffness is linear, the response forces may be too
small to prevent element inversions. When elements invert, they may not recover when the
external load is removed and could introduce oscillations, degrading the realism of such sim-
ulations. Using Neo-Hookean elasticity models, the ‘stiffness’ of the material changes with
to the amount of compression, and approaches infinity when the volume approaches zero.
In discrete time-stepping methods, elements still can invert, which could result in undefined
stresses and energies for Neo-Hookean models. To overcome this, the underlying energy den-
sity function can be extrapolated into the inverted region of the elements, as described in
[168], resulting in consistent forces for inverted elements. Due to this, inverted elements will
always recover when external loads are removed. This extrapolated energy density function
is then used in the computation of the elastic forces. Using this in combination with the SVD
and their derivatives [141, 161] of the deformation gradient tensor, results in an accurate and
robust simulation of Neo-Hookean materials. By taking also a robust treatment of element
inversion into account [95], such simulations will produce robust and smooth results when
the objects undergo large deformations under a large external load as shown in Chapter 5.
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Summary

Simulation and Animation of Deformable Solids

n animation is an illusion of motion that is created by showing a sequence of still images.
A This illusion is obtained when consecutive images have a minimal difference and are dis-
played at a sufficient high rate. Using this principle, an animator is able to bring the objects
and characters in these images to life. Formerly, these images were mainly drawn by hand,
nowadays computers are important tools for creating such animations. Thanks to animation
software, animators are able to animate complex objects and scenes. However, when it comes
to realistic animations of complex objects, or complex scenes containing many objects, some
physical principles should be obeyed. These are for example gravity, deformation and contact
between the surfaces of the involved objects. Each can depend on the shape, material and other
properties of the involved objects. Creating realistic animations of such systems manually can
be very challenging and time consuming. Therefore, one approach to improve the animation
process for this kind of animations is by using computer simulations.

Using computer simulations, the motion and deformation of an object can be computed given
the external and internal forces working on the body. Additionally, a simulation can compute
this for many objects while computing the contact and friction forces between the objects.
However, this kind of simulations often require a large amount of computational resources.
The direct and indirect influence of each object onto their motions makes this a difficult prob-
lem to solve, especially when objects can deform. Computer simulations can also be applied in
interactive animation applications, like VR and gaming. For those applications it is important
that the simulation runs fast and stable.

In this dissertation the following research question is addressed:

“How can we accurately and efficiently simulate rigid and deformable solids that can collide, in a
fast and stable way for computer animation applications?”

In particular, this dissertation presents methods that can improve the simulation process of
elastically deformable objects, applied to (interactive) computer animations, while taking the
accuracy into account. We address how to efficiently use graphics processors (GPUs) for as-
sembling and solving the numerical problems related to such simulations. These numerical
problems can be in general described by linear systems having large sparse matrices. These
matrices have to be processed efficiently by a GPU, while solving the linear system. Apart
from simulating the internal physics of deformable models, this dissertation presents methods
for solving contact and friction between the surfaces of the simulated objects. By solving the
coupled problem containing contact, friction, motion and deformation, one can obtain accu-
rate results faster. Here the accurate detection of collisions, while taking possible deformations
into account, is an important aspect.

219



In Chapter 3 we address how to store large sparse matrices in the memory of graphics pro-
cessors. These matrices need to be stored in memory such that each individual processor can
perform optimal during a matrix-vector multiplication. Because this is a key operation in many
iterative methods for solving linear systems, we demonstrate the use of this operation for the
conjugate gradient method, executed on one or multiple GPUs. To measure the efficiency of
these methods, we apply an extensive analysis of the method and used hardware.

Chapter 4 describes methods for simulating elastically deformable models, executed on a GPU.
The linear system obtained from the finite element method (FEM) and time-integration method,
is solved using the conjugate gradient method, executed on a single GPU, as described in Chap-
ter 3. The computations regarding individual elements are distributed among all available
processors of the GPU.

In Chapter 5 a method is presented for solving coupled problems containing contact, friction,
dynamics and deformation, instead of solving several sub-problems. The problem of such a
strategy applied to complex deformable models is that setting up the individual sub-problems
usually require a significant amount of memory and/or computation time. In this chapter
we show that we can avoid this by solving the coupled problem as one. Friction and contact
is modeled using Lagrange multipliers that directly constrain the degrees of freedom of the
simulated objects. This allows us to accurately compute normal and friction forces, which is
crucial regarding realism.

Chapter 6 focuses om the detection of collisions between deformable objects. Given a few
primitives, we can detect intersections between edges, faces and vertices. Using these in-
tersections, eventually collisions between objects (or between parts of the same object) are
correctly detected. For deformable objects it is necessary that one can distinguish between
normal and internal collisions and that they are processed correctly. Because the response of
a collision affects the shape of an object, which in turn affects the normal and friction forces,
the non-linear problem needs to be solved instead. If this non-linear problem is not accurately
solved, the result may contain oscillations that negatively affects the realism.

Chapter 7 concludes this dissertation with the main conclusions and a reflection. Finally, other
applications for the described methods are presented and possible future lines of research are
explored.
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Samenvatting

Simulatie en Animatie van Vervormbare Vaste Stoffen

en animatie is een illusie van beweging welke wordt gecreéerd door het weergeven van een
E reeks stilstaande beelden. Deze illusie wordt bereikt wanneer de opeenvolgende beelden
minimaal van elkaar verschillen en deze snel genoeg worden weergegeven. Met behulp van dit
principe is een animator in staat de objecten en karakters in deze beelden tot leven te wekken.
Waar deze beelden vroeger veelal met de hand werden getekend, is de computer vandaag de
dag een onmisbaar hulpmiddel voor het creéren van animaties. Dankzij animatiesoftware is
een animator in staat om complexe objecten en scenes te animeren. Echter, als het gaat om
het realistisch animeren van complexe objecten of complexe scenes bestaande uit vele objec-
ten, dan zal de animator rekening moeten houden met een aantal natuurkundige principes om
de animatie er realistisch uit te laten zien. Dit zijn onder andere zwaartekracht, vervorming
en contact tussen objecten. Deze kunnen afhankelijk zijn van de vorm, het materiaal en an-
dere eigenschappen van de objecten. Het realistisch animeren van dergelijke systemen kan
lastig zijn en veel tijd kosten. Eén manier om het animatieproces voor dergelijke animaties te
verbeteren is met behulp van computersimulaties.

Met behulp van een computersimulatie kan de vervorming en de beweging van een object
berekend worden aan de hand van de externe en interne krachten. Daarnaast kan een simulatie
dit voor meerdere objecten tegelijk berekenen en rekening houden met eventuele normaal- en
schuifkrachten tussen de objecten. Echter, dergelijke simulaties vereisen de nodige rekentijd.
De directe en indirecte invloed van de objecten op elkaars beweging maakt het probleem lastig
om op te lossen, met name als de objecten ook kunnen vervormen door deze externe invloeden.
Computersimulaties kunnen ook worden gebruikt in interactieve animatietoepassingen, zoals
in VR en games. Voor dergelijke applicaties is het van belang dat het simulatieproces snel en
stabiel verloopt.

In dit proefschrift staat de volgende onderzoeksvraag centraal:

“Hoe kunnen we, zo nauwkeurig en zo efficiént mogelijk, rigide en vervormbare objecten, welke
kunnen botsen, zo snel mogelijk op een stabiele manier simuleren, voor animatie toepassingen?”

Dit proefschrift presenteert methodes die het gehele simulatieproces van elastisch vervorm-
bare objecten, toegepast in (interactieve) computeranimaties, kunnen verbeteren en versnel-
len, terwijl er ook rekening wordt gehouden met de nauwkeurigheid. We gaan in op het zo
efficiént mogelijk gebruiken van grafische processoren (GPUs) voor het opstellen en oplossen
van de numerieke problemen behorende bij dergelijke simulaties. Deze numerieke problemen
kunnen in het algemeen worden beschreven door lineaire systemen die uit grote ijle matri-
ces bestaan. Deze matrices dienen zo efficiént en zo snel mogelijk door een GPU te worden
verwerkt wanneer een oplossing voor het lineaire systeem wordt berekend. Naast het simule-
ren van de interne fysica, gaat dit proefschrift in op methoden voor het oplossen van contact
en wrijving tussen de oppervlakten van de gesimuleerde objecten. Door contact, wrijving,
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beweging en vervorming als één probleem te beschouwen, kan men sneller tot nauwkeurige
resultaten komen. Een belangrijk aspect hierin is het correct detecteren van botsingen en
tegelijkertijd rekening houden met de mogelijke vervorming van de objecten.

In Hoofdstuk 3 gaan we specifiek in op de opslag van grote ijle matrices in het geheugen van
grafische processoren. Deze matrices worden zodanig opgeslagen dat de individuele processo-
ren optimaal benut kunnen worden tijdens een matrix-vector vermenigvuldiging. Omdat dit
een belangrijke operatie is in vele iteratieve methodes voor het oplossen van lineaire syste-
men, demonstreren we het gebruik van deze operatie in de geconjugeerde-gradiént-methode,
uitgevoerd op één en meerdere GPUs. Om de effectiviteit van deze methodes te meten, wordt
er een uitgebreide analyse van de methode en gebruikte hardware uitgevoerd.

Hoofdstuk 4 gaat dieper in op het simuleren van elastische materialen, uitgevoerd op één
GPU. Het lineaire systeem dat wordt verkregen door de eindige-elementenmethode (FEM) en
tijd-integratiemethode, wordt opgelost met de geconjugeerde-gradiént-methode, uitgevoerd
op één GPU, zoals beschreven in Hoofdstuk 3. De berekeningen van de individuele elementen
worden over alle beschikbare processoren van de GPU verdeeld.

In Hoofdstuk 5 wordt een methode gepresenteerd om contact, wrijving, beweging en vervor-
ming als één probleem op te lossen, in plaats van het probleem in kleinere deelproblemen op te
delen. Het probleem van een dergelijke strategie voor complexe vervormbare objecten is dat
het opstellen van deze deelproblemen meestal veel geheugen en/of rekentijd vereisen. In dit
hoofdstuk tonen we aan dat dit voorkomen kan worden door het probleem als één geheel op te
lossen. Wrijving en contact worden gemodelleerd door middel van Lagrange-multiplicatoren,
die direct de vrijheidsgraden van de gesimuleerde objecten begrenzen. Dit stelt ons in staat
de normaal- en schuifkrachten nauwkeurig te berekenen, wat cruciaal is als het om realisme
gaat.

Hoofdstuk 6 gaat dieper in op het detecteren van botsingen tussen vervormbare objecten.
Door middel van een aantal primitieven kunnen intersecties van randen, driehoeken en pun-
ten worden gevonden. Met behulp van deze intersecties kunnen uiteindelijk botsingen tussen
objecten (en tussen delen van hetzelfde object) correct worden gedetecteerd. Voor vervorm-
bare objecten is het noodzakelijk dat er onderscheid gemaakt kan worden tussen normale en
interne botsingen en dat deze correct worden verwerkt. Omdat ook de reactie van een botsing
de vorm van het object verandert, welke invloed heeft op de normaal- en schuifkrachten, moet
een niet-lineair probleem worden opgelost. Wordt dit niet of niet nauwkeurig gedaan, dan zal
het resultaat ongewenste oscillaties kunnen bevatten, wat het realisme negatief beinvloedt.

Hoofdstuk 7 sluit het proefschrift af met de belangrijkste bevindingen en een reflectie. Tot slot
worden andere toepassingen voor de beschreven methodes gepresenteerd en wordt mogelijk
toekomstig onderzoek verkend.
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